cherry-pick fix doc and fix dilation
This commit is contained in:
parent
ecc408a6db
commit
5e555a8047
|
@ -9,7 +9,7 @@ use_mkldnn 0
|
|||
max_side_len 960
|
||||
det_db_thresh 0.3
|
||||
det_db_box_thresh 0.5
|
||||
det_db_unclip_ratio 2.0
|
||||
det_db_unclip_ratio 1.6
|
||||
det_model_dir ./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
|
||||
# cls config
|
||||
|
|
|
@ -30,7 +30,7 @@ sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=hos
|
|||
sudo docker container exec -it ppocr /bin/bash
|
||||
```
|
||||
|
||||
**2. 安装PaddlePaddle Fluid v2.0**
|
||||
**2. 安装PaddlePaddle 2.0**
|
||||
```
|
||||
pip3 install --upgrade pip
|
||||
|
||||
|
|
|
@ -5,7 +5,8 @@ The inference model (the model saved by `paddle.jit.save`) is generally a solidi
|
|||
|
||||
The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
|
||||
|
||||
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. It has superior performance in predicting in deployment and accelerating inferencing, is flexible and convenient, and is suitable for integration with actual systems. For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/master/docs/zh_CN/extension/paddle_inference.md).
|
||||
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
|
||||
For more details, please refer to the document [Classification Framework](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/extension/paddle_mobile_inference.md).
|
||||
|
||||
Next, we first introduce how to convert a trained model into an inference model, and then we will introduce text detection, text recognition, angle class, and the concatenation of them based on inference model.
|
||||
|
||||
|
|
|
@ -33,7 +33,7 @@ You can also visit [DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags
|
|||
sudo docker container exec -it ppocr /bin/bash
|
||||
```
|
||||
|
||||
**2. Install PaddlePaddle Fluid v2.0**
|
||||
**2. Install PaddlePaddle 2.0**
|
||||
```
|
||||
pip3 install --upgrade pip
|
||||
|
||||
|
|
|
@ -64,7 +64,7 @@ class TextDetector(object):
|
|||
postprocess_params["box_thresh"] = args.det_db_box_thresh
|
||||
postprocess_params["max_candidates"] = 1000
|
||||
postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
|
||||
postprocess_params["use_dilation"] = True
|
||||
postprocess_params["use_dilation"] = args.use_dialtion
|
||||
elif self.det_algorithm == "EAST":
|
||||
postprocess_params['name'] = 'EASTPostProcess'
|
||||
postprocess_params["score_thresh"] = args.det_east_score_thresh
|
||||
|
|
|
@ -47,6 +47,8 @@ def parse_args():
|
|||
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
|
||||
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
|
||||
parser.add_argument("--max_batch_size", type=int, default=10)
|
||||
parser.add_argument("--use_dialtion", type=bool, default=False)
|
||||
|
||||
# EAST parmas
|
||||
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
|
||||
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
|
||||
|
@ -123,6 +125,8 @@ def create_predictor(args, mode, logger):
|
|||
# cache 10 different shapes for mkldnn to avoid memory leak
|
||||
config.set_mkldnn_cache_capacity(10)
|
||||
config.enable_mkldnn()
|
||||
# TODO LDOUBLEV: fix mkldnn bug when bach_size > 1
|
||||
#config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
|
||||
args.rec_batch_num = 1
|
||||
|
||||
# config.enable_memory_optim()
|
||||
|
|
Loading…
Reference in New Issue