Merge branch 'dygraph' of https://github.com/PaddlePaddle/PaddleOCR into multi_languages
|
@ -24,6 +24,7 @@ import sys
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
import json
|
import json
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
|
||||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
@ -1242,10 +1243,13 @@ class MainWindow(QMainWindow, WindowMixin):
|
||||||
# if unicodeFilePath in self.mImgList:
|
# if unicodeFilePath in self.mImgList:
|
||||||
|
|
||||||
if unicodeFilePath and os.path.exists(unicodeFilePath):
|
if unicodeFilePath and os.path.exists(unicodeFilePath):
|
||||||
self.imageData = read(unicodeFilePath, None)
|
|
||||||
self.canvas.verified = False
|
self.canvas.verified = False
|
||||||
|
|
||||||
image = QImage.fromData(self.imageData)
|
cvimg = cv2.imdecode(np.fromfile(unicodeFilePath, dtype=np.uint8), 1)
|
||||||
|
height, width, depth = cvimg.shape
|
||||||
|
cvimg = cv2.cvtColor(cvimg, cv2.COLOR_BGR2RGB)
|
||||||
|
image = QImage(cvimg.data, width, height, width * depth, QImage.Format_RGB888)
|
||||||
|
|
||||||
if image.isNull():
|
if image.isNull():
|
||||||
self.errorMessage(u'Error opening file',
|
self.errorMessage(u'Error opening file',
|
||||||
u"<p>Make sure <i>%s</i> is a valid image file." % unicodeFilePath)
|
u"<p>Make sure <i>%s</i> is a valid image file." % unicodeFilePath)
|
||||||
|
|
|
@ -7,6 +7,8 @@ except ImportError:
|
||||||
from PyQt4.QtCore import *
|
from PyQt4.QtCore import *
|
||||||
|
|
||||||
import json
|
import json
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
from libs.utils import newIcon
|
from libs.utils import newIcon
|
||||||
|
|
||||||
|
@ -34,11 +36,16 @@ class Worker(QThread):
|
||||||
if self.handle == 0:
|
if self.handle == 0:
|
||||||
self.listValue.emit(Imgpath)
|
self.listValue.emit(Imgpath)
|
||||||
if self.model == 'paddle':
|
if self.model == 'paddle':
|
||||||
self.result_dic = self.ocr.ocr(Imgpath, cls=True, det=True)
|
h, w, _ = cv2.imdecode(np.fromfile(Imgpath, dtype=np.uint8), 1).shape
|
||||||
|
if h > 32 and w > 32:
|
||||||
|
self.result_dic = self.ocr.ocr(Imgpath, cls=True, det=True)
|
||||||
|
else:
|
||||||
|
print('The size of', Imgpath, 'is too small to be recognised')
|
||||||
|
self.result_dic = None
|
||||||
|
|
||||||
# 结果保存
|
# 结果保存
|
||||||
if self.result_dic is None or len(self.result_dic) == 0:
|
if self.result_dic is None or len(self.result_dic) == 0:
|
||||||
print('Can not recognise file is : ', Imgpath)
|
print('Can not recognise file', Imgpath)
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
strs = ''
|
strs = ''
|
||||||
|
|
|
@ -8,7 +8,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
|
||||||
- 静态图版本:develop分支
|
- 静态图版本:develop分支
|
||||||
|
|
||||||
**近期更新**
|
**近期更新**
|
||||||
- 2021.1.18 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数152个,每周一都会更新,欢迎大家持续关注。
|
- 2021.1.25 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数157个,每周一都会更新,欢迎大家持续关注。
|
||||||
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
|
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
|
||||||
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
|
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
|
||||||
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
|
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
|
||||||
|
|
|
@ -1,11 +1,9 @@
|
||||||
# Version: 1.0.0
|
# Version: 2.0.0
|
||||||
FROM hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev
|
FROM registry.baidubce.com/paddlepaddle/paddle:2.0.0rc1
|
||||||
|
|
||||||
# PaddleOCR base on Python3.7
|
# PaddleOCR base on Python3.7
|
||||||
RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple
|
RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple
|
||||||
|
|
||||||
RUN python3.7 -m pip install paddlepaddle==2.0.0rc0 -i https://mirror.baidu.com/pypi/simple
|
|
||||||
|
|
||||||
RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
|
RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
|
||||||
|
|
||||||
RUN git clone https://github.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
|
RUN git clone https://github.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
|
||||||
|
@ -15,15 +13,15 @@ WORKDIR /PaddleOCR
|
||||||
RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
|
RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
|
||||||
|
|
||||||
RUN mkdir -p /PaddleOCR/inference/
|
RUN mkdir -p /PaddleOCR/inference/
|
||||||
# Download orc detect model(light version). if you want to change normal version, you can change ch_ppocr_mobile_v1.1_det_infer to ch_ppocr_server_v1.1_det_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
|
# Download orc detect model(light version). if you want to change normal version, you can change ch_ppocr_mobile_v2.0_det_infer to ch_ppocr_server_v2.0_det_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||||
ADD {link} /PaddleOCR/inference/
|
ADD {link} /PaddleOCR/inference/
|
||||||
RUN tar xf /PaddleOCR/inference/{file} -C /PaddleOCR/inference/
|
RUN tar xf /PaddleOCR/inference/{file} -C /PaddleOCR/inference/
|
||||||
|
|
||||||
# Download direction classifier(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_cls_infer to ch_ppocr_mobile_v1.1_cls_infer, also remember change cls_model_dir in deploy/hubserving/ocr_system/params.py)
|
# Download direction classifier(light version). If you want to change normal version, you can change ch_ppocr_mobile_v2.0_cls_infer to ch_ppocr_mobile_v2.0_cls_infer, also remember change cls_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||||
ADD {link} /PaddleOCR/inference/
|
ADD {link} /PaddleOCR/inference/
|
||||||
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
||||||
|
|
||||||
# Download orc recognition model(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_rec_infer to ch_ppocr_server_v1.1_rec_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
|
# Download orc recognition model(light version). If you want to change normal version, you can change ch_ppocr_mobile_v2.0_rec_infer to ch_ppocr_server_v2.0_rec_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||||
ADD {link} /PaddleOCR/inference/
|
ADD {link} /PaddleOCR/inference/
|
||||||
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
||||||
|
|
||||||
|
|
|
@ -1,11 +1,9 @@
|
||||||
# Version: 1.0.0
|
# Version: 2.0.0
|
||||||
FROM hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda10.0-cudnn7-dev
|
FROM egistry.baidubce.com/paddlepaddle/paddle:2.0.0rc1-gpu-cuda10.0-cudnn7
|
||||||
|
|
||||||
# PaddleOCR base on Python3.7
|
# PaddleOCR base on Python3.7
|
||||||
RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple
|
RUN pip3.7 install --upgrade pip -i https://mirror.baidu.com/pypi/simple
|
||||||
|
|
||||||
RUN python3.7 -m pip install paddlepaddle-gpu==2.0.0rc0 -i https://mirror.baidu.com/pypi/simple
|
|
||||||
|
|
||||||
RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
|
RUN pip3.7 install paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
|
||||||
|
|
||||||
RUN git clone https://github.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
|
RUN git clone https://github.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
|
||||||
|
@ -15,15 +13,15 @@ WORKDIR /PaddleOCR
|
||||||
RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
|
RUN pip3.7 install -r requirements.txt -i https://mirror.baidu.com/pypi/simple
|
||||||
|
|
||||||
RUN mkdir -p /PaddleOCR/inference/
|
RUN mkdir -p /PaddleOCR/inference/
|
||||||
# Download orc detect model(light version). if you want to change normal version, you can change ch_ppocr_mobile_v1.1_det_infer to ch_ppocr_server_v1.1_det_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
|
# Download orc detect model(light version). if you want to change normal version, you can change ch_ppocr_mobile_v2.0_det_infer to ch_ppocr_server_v2.0_det_infer, also remember change det_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||||
ADD {link} /PaddleOCR/inference/
|
ADD {link} /PaddleOCR/inference/
|
||||||
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
||||||
|
|
||||||
# Download direction classifier(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_cls_infer to ch_ppocr_mobile_v1.1_cls_infer, also remember change cls_model_dir in deploy/hubserving/ocr_system/params.py)
|
# Download direction classifier(light version). If you want to change normal version, you can change ch_ppocr_mobile_v2.0_cls_infer to ch_ppocr_mobile_v2.0_cls_infer, also remember change cls_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||||
ADD {link} /PaddleOCR/inference/
|
ADD {link} /PaddleOCR/inference/
|
||||||
RUN tar xf /PaddleOCR/inference/{file} -C /PaddleOCR/inference/
|
RUN tar xf /PaddleOCR/inference/{file} -C /PaddleOCR/inference/
|
||||||
|
|
||||||
# Download orc recognition model(light version). If you want to change normal version, you can change ch_ppocr_mobile_v1.1_rec_infer to ch_ppocr_server_v1.1_rec_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
|
# Download orc recognition model(light version). If you want to change normal version, you can change ch_ppocr_mobile_v2.0_rec_infer to ch_ppocr_server_v2.0_rec_infer, also remember change rec_model_dir in deploy/hubserving/ocr_system/params.py)
|
||||||
ADD {link} /PaddleOCR/inference/
|
ADD {link} /PaddleOCR/inference/
|
||||||
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
RUN tar xf /PaddleOCR/inference/{file}.tar -C /PaddleOCR/inference/
|
||||||
|
|
||||||
|
|
|
@ -9,42 +9,43 @@
|
||||||
|
|
||||||
## PaddleOCR常见问题汇总(持续更新)
|
## PaddleOCR常见问题汇总(持续更新)
|
||||||
|
|
||||||
* [近期更新(2021.1.18)](#近期更新)
|
* [近期更新(2021.1.25)](#近期更新)
|
||||||
* [【精选】OCR精选10个问题](#OCR精选10个问题)
|
* [【精选】OCR精选10个问题](#OCR精选10个问题)
|
||||||
* [【理论篇】OCR通用32个问题](#OCR通用问题)
|
* [【理论篇】OCR通用32个问题](#OCR通用问题)
|
||||||
* [基础知识7题](#基础知识)
|
* [基础知识7题](#基础知识)
|
||||||
* [数据集7题](#数据集2)
|
* [数据集7题](#数据集2)
|
||||||
* [模型训练调优18题](#模型训练调优2)
|
* [模型训练调优18题](#模型训练调优2)
|
||||||
* [【实战篇】PaddleOCR实战110个问题](#PaddleOCR实战问题)
|
* [【实战篇】PaddleOCR实战115个问题](#PaddleOCR实战问题)
|
||||||
* [使用咨询36题](#使用咨询)
|
* [使用咨询38题](#使用咨询)
|
||||||
* [数据集17题](#数据集3)
|
* [数据集17题](#数据集3)
|
||||||
* [模型训练调优28题](#模型训练调优3)
|
* [模型训练调优28题](#模型训练调优3)
|
||||||
* [预测部署29题](#预测部署3)
|
* [预测部署32题](#预测部署3)
|
||||||
|
|
||||||
|
|
||||||
<a name="近期更新"></a>
|
<a name="近期更新"></a>
|
||||||
## 近期更新(2021.1.18)
|
## 近期更新(2021.1.25)
|
||||||
|
|
||||||
|
#### Q3.1.37: 小语种模型只有识别模型,没有检测模型吗?
|
||||||
|
|
||||||
#### Q2.3.18: 在PP-OCR系统中,文本检测的骨干网络为什么没有使用SE模块?
|
**A**:小语种(包括纯英文数字)的检测模型和中文的检测模型是共用的,在训练中文检测模型时加入了多语言数据。https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/models_list_en.md#1-text-detection-model。
|
||||||
|
|
||||||
**A**:SE模块是MobileNetV3网络一个重要模块,目的是估计特征图每个特征通道重要性,给特征图每个特征分配权重,提高网络的表达能力。但是,对于文本检测,输入网络的分辨率比较大,一般是640\*640,利用SE模块估计特征图每个特征通道重要性比较困难,网络提升能力有限,但是该模块又比较耗时,因此在PP-OCR系统中,文本检测的骨干网络没有使用SE模块。实验也表明,当去掉SE模块,超轻量模型大小可以减小40%,文本检测效果基本不受影响。详细可以参考PP-OCR技术文章,https://arxiv.org/abs/2009.09941.
|
#### Q3.1.38: module 'paddle.distributed' has no attribute ‘get_rank’。
|
||||||
|
|
||||||
#### Q3.3.27: PaddleOCR关于文本识别模型的训练,支持的数据增强方式有哪些?
|
**A**:Paddle版本问题,请安装2.0版本Paddle:pip install paddlepaddle==2.0.0rc1。
|
||||||
|
|
||||||
**A**:文本识别支持的数据增强方式有随机小幅度裁剪、图像平衡、添加白噪声、颜色漂移、图像反色和Text Image Augmentation(TIA)变换等。可以参考[代码](../../ppocr/data/imaug/rec_img_aug.py)中的warp函数。
|
#### Q3.4.30: PaddleOCR是否支持在华为鲲鹏920CPU上部署?
|
||||||
|
|
||||||
#### Q3.3.28: 关于dygraph分支中,文本识别模型训练,要使用数据增强应该如何设置?
|
**A**:目前Paddle的预测库是支持华为鲲鹏920CPU的,但是OCR还没在这些芯片上测试过,可以自己调试,有问题反馈给我们。
|
||||||
|
|
||||||
**A**:可以参考[配置文件](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)在Train['dataset']['transforms']添加RecAug字段,使数据增强生效。可以通过添加对aug_prob设置,表示每种数据增强采用的概率。aug_prob默认是0.4.由于tia数据增强特殊性,默认不采用,可以通过添加use_tia设置,使tia数据增强生效。详细设置可以参考[ISSUE 1744](https://github.com/PaddlePaddle/PaddleOCR/issues/1744)。
|
#### Q3.4.31: 采用Paddle-Lite进行端侧部署,出现问题,环境没问题。
|
||||||
|
|
||||||
#### Q3.4.28: PP-OCR系统中,文本检测的结果有置信度吗?
|
**A**:如果你的预测库是自己编译的,那么你的nb文件也要自己编译,用同一个lite版本。不能直接用下载的nb文件,因为版本不同。
|
||||||
|
|
||||||
**A**:文本检测的结果有置信度,由于推理过程中没有使用,所以没有显示的返回到最终结果中。如果需要文本检测结果的置信度,可以在[文本检测DB的后处理代码](../../ppocr/postprocess/db_postprocess.py)的155行,添加scores信息。这样,在[检测预测代码](../../tools/infer/predict_det.py)的197行,就可以拿到文本检测的scores信息。
|
#### Q3.4.32: PaddleOCR的模型支持onnx转换吗?
|
||||||
|
|
||||||
#### Q3.4.29: DB文本检测,特征提取网络金字塔构建的部分代码在哪儿?
|
**A**:我们目前已经通过Paddle2ONNX来支持各模型套件的转换,PaddleOCR基于PaddlePaddle 2.0的版本(dygraph分支)已经支持导出为ONNX,欢迎关注Paddle2ONNX,了解更多项目的进展:
|
||||||
|
Paddle2ONNX项目:https://github.com/PaddlePaddle/Paddle2ONNX
|
||||||
**A**:特征提取网络金字塔构建的部分:[代码位置](../../ppocr/modeling/necks/db_fpn.py)。ppocr/modeling文件夹里面是组网相关的代码,其中architectures是文本检测或者文本识别整体流程代码;backbones是骨干网络相关代码;necks是类似与FPN的颈函数代码;heads是提取文本检测或者文本识别预测结果相关的头函数;transforms是类似于TPS特征预处理模块。更多的信息可以参考[代码组织结构](./tree.md)。
|
Paddle2ONNX支持转换的[模型列表](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/docs/zh/model_zoo.md#%E5%9B%BE%E5%83%8Focr)
|
||||||
|
|
||||||
<a name="OCR精选10个问题"></a>
|
<a name="OCR精选10个问题"></a>
|
||||||
## 【精选】OCR精选10个问题
|
## 【精选】OCR精选10个问题
|
||||||
|
@ -474,9 +475,18 @@ StyleText的用途主要是:提取style_image中的字体、背景等style信
|
||||||
例如识别身份证照片,可以先匹配"姓名","性别"等关键字,根据这些关键字的坐标去推测其他信息的位置,再与识别的结果匹配。
|
例如识别身份证照片,可以先匹配"姓名","性别"等关键字,根据这些关键字的坐标去推测其他信息的位置,再与识别的结果匹配。
|
||||||
|
|
||||||
#### Q3.1.36 如何识别竹简上的古文?
|
#### Q3.1.36 如何识别竹简上的古文?
|
||||||
|
|
||||||
**A**:对于字符都是普通的汉字字符的情况,只要标注足够的数据,finetune模型就可以了。如果数据量不足,您可以尝试StyleText工具。
|
**A**:对于字符都是普通的汉字字符的情况,只要标注足够的数据,finetune模型就可以了。如果数据量不足,您可以尝试StyleText工具。
|
||||||
而如果使用的字符是特殊的古文字、甲骨文、象形文字等,那么首先需要构建一个古文字的字典,之后再进行训练。
|
而如果使用的字符是特殊的古文字、甲骨文、象形文字等,那么首先需要构建一个古文字的字典,之后再进行训练。
|
||||||
|
|
||||||
|
#### Q3.1.37: 小语种模型只有识别模型,没有检测模型吗?
|
||||||
|
|
||||||
|
**A**:小语种(包括纯英文数字)的检测模型和中文的检测模型是共用的,在训练中文检测模型时加入了多语言数据。https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_en/models_list_en.md#1-text-detection-model。
|
||||||
|
|
||||||
|
#### Q3.1.38: module 'paddle.distributed' has no attribute ‘get_rank’。
|
||||||
|
|
||||||
|
**A**:Paddle版本问题,请安装2.0版本Paddle:pip install paddlepaddle==2.0.0rc1。
|
||||||
|
|
||||||
<a name="数据集3"></a>
|
<a name="数据集3"></a>
|
||||||
### 数据集
|
### 数据集
|
||||||
|
|
||||||
|
@ -854,3 +864,17 @@ img = cv.imdecode(img_array, -1)
|
||||||
#### Q3.4.29: DB文本检测,特征提取网络金字塔构建的部分代码在哪儿?
|
#### Q3.4.29: DB文本检测,特征提取网络金字塔构建的部分代码在哪儿?
|
||||||
|
|
||||||
**A**:特征提取网络金字塔构建的部分:[代码位置](../../ppocr/modeling/necks/db_fpn.py)。ppocr/modeling文件夹里面是组网相关的代码,其中architectures是文本检测或者文本识别整体流程代码;backbones是骨干网络相关代码;necks是类似与FPN的颈函数代码;heads是提取文本检测或者文本识别预测结果相关的头函数;transforms是类似于TPS特征预处理模块。更多的信息可以参考[代码组织结构](./tree.md)。
|
**A**:特征提取网络金字塔构建的部分:[代码位置](../../ppocr/modeling/necks/db_fpn.py)。ppocr/modeling文件夹里面是组网相关的代码,其中architectures是文本检测或者文本识别整体流程代码;backbones是骨干网络相关代码;necks是类似与FPN的颈函数代码;heads是提取文本检测或者文本识别预测结果相关的头函数;transforms是类似于TPS特征预处理模块。更多的信息可以参考[代码组织结构](./tree.md)。
|
||||||
|
|
||||||
|
#### Q3.4.30: PaddleOCR是否支持在华为鲲鹏920CPU上部署?
|
||||||
|
|
||||||
|
**A**:目前Paddle的预测库是支持华为鲲鹏920CPU的,但是OCR还没在这些芯片上测试过,可以自己调试,有问题反馈给我们。
|
||||||
|
|
||||||
|
#### Q3.4.31: 采用Paddle-Lite进行端侧部署,出现问题,环境没问题。
|
||||||
|
|
||||||
|
**A**:如果你的预测库是自己编译的,那么你的nb文件也要自己编译,用同一个lite版本。不能直接用下载的nb文件,因为版本不同。
|
||||||
|
|
||||||
|
#### Q3.4.32: PaddleOCR的模型支持onnx转换吗?
|
||||||
|
|
||||||
|
**A**:我们目前已经通过Paddle2ONNX来支持各模型套件的转换,PaddleOCR基于PaddlePaddle 2.0的版本(dygraph分支)已经支持导出为ONNX,欢迎关注Paddle2ONNX,了解更多项目的进展:
|
||||||
|
Paddle2ONNX项目:https://github.com/PaddlePaddle/Paddle2ONNX
|
||||||
|
Paddle2ONNX支持转换的[模型列表](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/docs/zh/model_zoo.md#%E5%9B%BE%E5%83%8Focr)
|
|
@ -14,11 +14,10 @@ PaddleOCR开源的文本检测算法列表:
|
||||||
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
|
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
|
||||||
|
|
||||||
在ICDAR2015文本检测公开数据集上,算法效果如下:
|
在ICDAR2015文本检测公开数据集上,算法效果如下:
|
||||||
|
|
||||||
|模型|骨干网络|precision|recall|Hmean|下载链接|
|
|模型|骨干网络|precision|recall|Hmean|下载链接|
|
||||||
| --- | --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- | --- |
|
||||||
|EAST|ResNet50_vd|88.76%|81.36%|84.90%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|
||||||
|EAST|MobileNetV3|78.24%|79.15%|78.69%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|
||||||
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
||||||
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
||||||
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|
||||||
|
@ -40,17 +39,19 @@ PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训
|
||||||
PaddleOCR基于动态图开源的文本识别算法列表:
|
PaddleOCR基于动态图开源的文本识别算法列表:
|
||||||
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
|
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
|
||||||
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
|
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
|
||||||
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] coming soon
|
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
|
||||||
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
|
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
|
||||||
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
|
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
|
||||||
|
|
||||||
参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|
||||||
|
|
||||||
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|
||||||
|-|-|-|-|-|
|
|---|---|---|---|---|
|
||||||
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|
||||||
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|
||||||
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||||||
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||||
|
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||||
|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||||
|
|
||||||
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。
|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。
|
||||||
|
|
|
@ -352,10 +352,10 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
|
||||||
|
|
||||||
```
|
```
|
||||||
# 使用方向分类器
|
# 使用方向分类器
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
||||||
|
|
||||||
# 不使用方向分类器
|
# 不使用方向分类器
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
@ -364,7 +364,7 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model
|
||||||
|
|
||||||
执行命令后,识别结果图像如下:
|
执行命令后,识别结果图像如下:
|
||||||
|
|
||||||
![](../imgs_results/2.jpg)
|
![](../imgs_results/system_res_00018069.jpg)
|
||||||
|
|
||||||
<a name="其他模型推理"></a>
|
<a name="其他模型推理"></a>
|
||||||
### 2. 其他模型推理
|
### 2. 其他模型推理
|
||||||
|
@ -381,4 +381,4 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
|
||||||
|
|
||||||
执行命令后,识别结果图像如下:
|
执行命令后,识别结果图像如下:
|
||||||
|
|
||||||
(coming soon)
|
![](../imgs_results/img_10_east_starnet.jpg)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
## OCR模型列表(V2.0,2020年12月12日更新)
|
## OCR模型列表(V2.0,2021年1月20日更新)
|
||||||
**说明** :2.0版模型和[1.1版模型](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/models_list.md)的主要区别在于动态图训练vs.静态图训练,模型性能上无明显差距。
|
**说明** :2.0版模型和[1.1版模型](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/models_list.md)的主要区别在于动态图训练vs.静态图训练,模型性能上无明显差距。
|
||||||
|
|
||||||
- [一、文本检测模型](#文本检测模型)
|
- [一、文本检测模型](#文本检测模型)
|
||||||
|
@ -22,7 +22,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |推理模型 (coming soon) / slim模型 (coming soon)|
|
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| |推理模型 (coming soon) / 训练模型 (coming soon)|
|
||||||
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|
||||||
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
|
||||||
|
|
||||||
|
@ -35,7 +35,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |推理模型 (coming soon) / slim模型 (coming soon) |
|
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|
||||||
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||||
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||||
|
|
||||||
|
@ -46,7 +46,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|en_number_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| | 推理模型 (coming soon) / slim模型 (coming soon) |
|
|en_number_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|
||||||
|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
|en_number_mobile_v2.0_rec|原始超轻量模型,支持英文、数字识别|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
<a name="多语言识别模型"></a>
|
<a name="多语言识别模型"></a>
|
||||||
|
@ -55,7 +55,7 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|
||||||
**说明:** 新增的多语言模型的配置文件通过代码方式生成,您可以通过`--help`参数查看当前PaddleOCR支持生成哪些多语言的配置文件:
|
**说明:** 新增的多语言模型的配置文件通过代码方式生成,您可以通过`--help`参数查看当前PaddleOCR支持生成哪些多语言的配置文件:
|
||||||
```bash
|
```bash
|
||||||
# 该代码需要在指定目录运行
|
# 该代码需要在指定目录运行
|
||||||
cd PaddleOCR/configs/rec/multi_language/
|
cd {your/path/}PaddleOCR/configs/rec/multi_language/
|
||||||
python3 generate_multi_language_configs.py --help
|
python3 generate_multi_language_configs.py --help
|
||||||
```
|
```
|
||||||
下面以生成意大利语配置文件为例:
|
下面以生成意大利语配置文件为例:
|
||||||
|
@ -64,7 +64,7 @@ python3 generate_multi_language_configs.py --help
|
||||||
如果您仅仅想用配置文件测试PaddleOCR提供的多语言模型可以通过下面命令生成默认的配置文件,使用PaddleOCR提供的小语种字典进行预测。
|
如果您仅仅想用配置文件测试PaddleOCR提供的多语言模型可以通过下面命令生成默认的配置文件,使用PaddleOCR提供的小语种字典进行预测。
|
||||||
```bash
|
```bash
|
||||||
# 该代码需要在指定目录运行
|
# 该代码需要在指定目录运行
|
||||||
cd PaddleOCR/configs/rec/multi_language/
|
cd {your/path/}PaddleOCR/configs/rec/multi_language/
|
||||||
# 通过-l或者--language参数设置需要生成的语种的配置文件,该命令会将默认参数写入配置文件
|
# 通过-l或者--language参数设置需要生成的语种的配置文件,该命令会将默认参数写入配置文件
|
||||||
python3 generate_multi_language_configs.py -l it
|
python3 generate_multi_language_configs.py -l it
|
||||||
```
|
```
|
||||||
|
@ -77,6 +77,8 @@ python3 generate_multi_language_configs.py -l it
|
||||||
|
|
||||||
使用以下命令生成配置文件:
|
使用以下命令生成配置文件:
|
||||||
```bash
|
```bash
|
||||||
|
# 该代码需要在指定目录运行
|
||||||
|
cd {your/path/}PaddleOCR/configs/rec/multi_language/
|
||||||
# -l或者--language字段是必须的
|
# -l或者--language字段是必须的
|
||||||
# --train修改训练集,--val修改验证集,--data_dir修改数据集目录,-o修改对应默认参数
|
# --train修改训练集,--val修改验证集,--data_dir修改数据集目录,-o修改对应默认参数
|
||||||
# --dict命令改变字典路径,示例使用默认字典路径则该参数可不填
|
# --dict命令改变字典路径,示例使用默认字典路径则该参数可不填
|
||||||
|
@ -112,7 +114,7 @@ python3 generate_multi_language_configs.py -l it \
|
||||||
| uk_mobile_v2.0_rec |乌克兰文识别|rec_uk_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_train.tar) |
|
| uk_mobile_v2.0_rec |乌克兰文识别|rec_uk_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_train.tar) |
|
||||||
| be_mobile_v2.0_rec |白俄罗斯文识别|rec_be_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_train.tar) |
|
| be_mobile_v2.0_rec |白俄罗斯文识别|rec_be_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_train.tar) |
|
||||||
| te_mobile_v2.0_rec |泰卢固文识别|rec_te_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
|
| te_mobile_v2.0_rec |泰卢固文识别|rec_te_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
|
||||||
| ka_mobile_v2.0_rec |卡纳达文识别|[rec_ka_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
|
| ka_mobile_v2.0_rec |卡纳达文识别|rec_ka_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
|
||||||
| ta_mobile_v2.0_rec |泰米尔文识别|rec_ta_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|
| ta_mobile_v2.0_rec |泰米尔文识别|rec_ta_lite_train.yml|2.63M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
|
|
||||||
|
@ -121,5 +123,5 @@ python3 generate_multi_language_configs.py -l it \
|
||||||
|
|
||||||
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |推理模型 (coming soon) / 训练模型 / slim模型 |
|
|ch_ppocr_mobile_slim_v2.0_cls|slim量化版模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) |
|
||||||
|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
|ch_ppocr_mobile_v2.0_cls|原始模型|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
||||||
|
|
|
@ -19,8 +19,8 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|
||||||
|
|
||||||
|Model|Backbone|precision|recall|Hmean|Download link|
|
|Model|Backbone|precision|recall|Hmean|Download link|
|
||||||
| --- | --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- | --- |
|
||||||
|EAST|ResNet50_vd|88.76%|81.36%|84.90%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|
||||||
|EAST|MobileNetV3|78.24%|79.15%|78.69%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|
||||||
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|
||||||
|DB|MobileNetV3|77.29%|73.08%|75.12%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|
||||||
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|
||||||
|
@ -41,17 +41,19 @@ For the training guide and use of PaddleOCR text detection algorithms, please re
|
||||||
PaddleOCR open-source text recognition algorithms list:
|
PaddleOCR open-source text recognition algorithms list:
|
||||||
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
|
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
|
||||||
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
|
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
|
||||||
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] coming soon
|
- [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11]
|
||||||
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
|
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
|
||||||
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
|
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
|
||||||
|
|
||||||
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
|
||||||
|
|
||||||
|Model|Backbone|Avg Accuracy|Module combination|Download link|
|
|Model|Backbone|Avg Accuracy|Module combination|Download link|
|
||||||
|-|-|-|-|-|
|
|---|---|---|---|---|
|
||||||
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|
||||||
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|
||||||
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|
||||||
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|
||||||
|
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|
||||||
|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|
||||||
|
|
||||||
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)
|
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)
|
||||||
|
|
|
@ -366,15 +366,15 @@ When performing prediction, you need to specify the path of a single image or a
|
||||||
|
|
||||||
```
|
```
|
||||||
# use direction classifier
|
# use direction classifier
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
||||||
|
|
||||||
# not use use direction classifier
|
# not use use direction classifier
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
|
||||||
```
|
```
|
||||||
|
|
||||||
After executing the command, the recognition result image is as follows:
|
After executing the command, the recognition result image is as follows:
|
||||||
|
|
||||||
![](../imgs_results/2.jpg)
|
![](../imgs_results/system_res_00018069.jpg)
|
||||||
|
|
||||||
<a name="OTHER_MODELS"></a>
|
<a name="OTHER_MODELS"></a>
|
||||||
### 2. OTHER MODELS
|
### 2. OTHER MODELS
|
||||||
|
@ -391,4 +391,4 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_10.jpg" --d
|
||||||
|
|
||||||
After executing the command, the recognition result image is as follows:
|
After executing the command, the recognition result image is as follows:
|
||||||
|
|
||||||
(coming soon)
|
![](../imgs_results/img_10_east_starnet.jpg)
|
||||||
|
|
|
@ -33,7 +33,7 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| |inference model (coming soon) / slim model (coming soon) |
|
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|
||||||
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|3.71M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|
||||||
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
|
||||||
|
|
||||||
|
@ -45,7 +45,7 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| |inference model (coming soon ) / slim model (coming soon) |
|
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|
||||||
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.56M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
<a name="Multilingual"></a>
|
<a name="Multilingual"></a>
|
||||||
|
@ -54,6 +54,8 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|
||||||
**Note:** The configuration file of the new multi language model is generated by code. You can use the `--help` parameter to check which multi language are supported by current PaddleOCR.
|
**Note:** The configuration file of the new multi language model is generated by code. You can use the `--help` parameter to check which multi language are supported by current PaddleOCR.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
# The code needs to run in the specified directory
|
||||||
|
cd {your/path/}PaddleOCR/configs/rec/multi_language/
|
||||||
python3 generate_multi_language_configs.py --help
|
python3 generate_multi_language_configs.py --help
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -62,7 +64,7 @@ Take the Italian configuration file as an example:
|
||||||
you can generate the default configuration file through the following command, and use the default language dictionary provided by paddleocr for prediction.
|
you can generate the default configuration file through the following command, and use the default language dictionary provided by paddleocr for prediction.
|
||||||
```bash
|
```bash
|
||||||
# The code needs to run in the specified directory
|
# The code needs to run in the specified directory
|
||||||
cd PaddleOCR/configs/rec/multi_language/
|
cd {your/path/}PaddleOCR/configs/rec/multi_language/
|
||||||
# Set the required language configuration file through -l or --language parameter
|
# Set the required language configuration file through -l or --language parameter
|
||||||
# This command will write the default parameter to the configuration file.
|
# This command will write the default parameter to the configuration file.
|
||||||
python3 generate_multi_language_configs.py -l it
|
python3 generate_multi_language_configs.py -l it
|
||||||
|
@ -74,6 +76,8 @@ If you want to train your own model, you can prepare the training set file, veri
|
||||||
- Use the default dictionary provided by paddleocr:{your/path/}PaddleOCR/ppocr/utils/dict/it_dict.txt
|
- Use the default dictionary provided by paddleocr:{your/path/}PaddleOCR/ppocr/utils/dict/it_dict.txt
|
||||||
- Training data path:{your/path/}PaddleOCR/train_data
|
- Training data path:{your/path/}PaddleOCR/train_data
|
||||||
```bash
|
```bash
|
||||||
|
# The code needs to run in the specified directory
|
||||||
|
cd {your/path/}PaddleOCR/configs/rec/multi_language/
|
||||||
# The -l or --language parameter is required
|
# The -l or --language parameter is required
|
||||||
# --train modify train_list path
|
# --train modify train_list path
|
||||||
# --val modify eval_list path
|
# --val modify eval_list path
|
||||||
|
@ -92,27 +96,27 @@ python3 generate_multi_language_configs.py -l it \
|
||||||
| german_mobile_v2.0_rec |Lightweight model for French recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
|
| german_mobile_v2.0_rec |Lightweight model for French recognition|[rec_german_lite_train.yml](../../configs/rec/multi_language/rec_german_lite_train.yml)|2.65M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_train.tar) |
|
||||||
| korean_mobile_v2.0_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
|
| korean_mobile_v2.0_rec |Lightweight model for Korean recognition|[rec_korean_lite_train.yml](../../configs/rec/multi_language/rec_korean_lite_train.yml)|3.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_train.tar) |
|
||||||
| japan_mobile_v2.0_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
|
| japan_mobile_v2.0_rec |Lightweight model for Japanese recognition|[rec_japan_lite_train.yml](../../configs/rec/multi_language/rec_japan_lite_train.yml)|4.23M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_train.tar) |
|
||||||
| it_mobile_v2.0_rec |Lightweight model for Italian recognition|rec_it_lite_train.yml|2.53M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/it_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/it_mobile_v2.0_rec_train.tar) |
|
| it_mobile_v2.0_rec |Lightweight model for Italian recognition|rec_it_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/it_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/it_mobile_v2.0_rec_train.tar) |
|
||||||
| xi_mobile_v2.0_rec |Lightweight model for Spanish recognition|rec_xi_lite_train.yml|2.53M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/xi_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/xi_mobile_v2.0_rec_train.tar) |
|
| xi_mobile_v2.0_rec |Lightweight model for Spanish recognition|rec_xi_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/xi_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/xi_mobile_v2.0_rec_train.tar) |
|
||||||
| pu_mobile_v2.0_rec |Lightweight model for Portuguese recognition|rec_pu_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/pu_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/pu_mobile_v2.0_rec_train.tar) |
|
| pu_mobile_v2.0_rec |Lightweight model for Portuguese recognition|rec_pu_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/pu_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/pu_mobile_v2.0_rec_train.tar) |
|
||||||
| ru_mobile_v2.0_rec |Lightweight model for Russia recognition|rec_ru_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ru_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ru_mobile_v2.0_rec_train.tar) |
|
| ru_mobile_v2.0_rec |Lightweight model for Russia recognition|rec_ru_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ru_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ru_mobile_v2.0_rec_train.tar) |
|
||||||
| ar_mobile_v2.0_rec |Lightweight model for Arabic recognition|rec_ar_lite_train.yml|2.53M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ar_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ar_mobile_v2.0_rec_train.tar) |
|
| ar_mobile_v2.0_rec |Lightweight model for Arabic recognition|rec_ar_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ar_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ar_mobile_v2.0_rec_train.tar) |
|
||||||
| hi_mobile_v2.0_rec |Lightweight model for Hindi recognition|rec_hi_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/hi_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/hi_mobile_v2.0_rec_train.tar) |
|
| hi_mobile_v2.0_rec |Lightweight model for Hindi recognition|rec_hi_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/hi_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/hi_mobile_v2.0_rec_train.tar) |
|
||||||
| chinese_cht_mobile_v2.0_rec |Lightweight model for chinese traditional recognition|rec_chinese_cht_lite_train.yml|5.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
|
| chinese_cht_mobile_v2.0_rec |Lightweight model for chinese traditional recognition|rec_chinese_cht_lite_train.yml|5.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_train.tar) |
|
||||||
| ug_mobile_v2.0_rec |Lightweight model for Uyghur recognition|rec_ug_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ug_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ug_mobile_v2.0_rec_train.tar) |
|
| ug_mobile_v2.0_rec |Lightweight model for Uyghur recognition|rec_ug_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ug_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ug_mobile_v2.0_rec_train.tar) |
|
||||||
| fa_mobile_v2.0_rec |Lightweight model for Persian recognition|rec_fa_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/fa_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/fa_mobile_v2.0_rec_train.tar) |
|
| fa_mobile_v2.0_rec |Lightweight model for Persian recognition|rec_fa_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/fa_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/fa_mobile_v2.0_rec_train.tar) |
|
||||||
| ur_mobile_v2.0_rec |Lightweight model for Urdu recognition|rec_ur_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ur_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ur_mobile_v2.0_rec_train.tar) |
|
| ur_mobile_v2.0_rec |Lightweight model for Urdu recognition|rec_ur_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ur_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ur_mobile_v2.0_rec_train.tar) |
|
||||||
| rs_mobile_v2.0_rec |Lightweight model for Serbian(latin) recognition|rec_rs_lite_train.yml|2.53M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rs_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rs_mobile_v2.0_rec_train.tar) |
|
| rs_mobile_v2.0_rec |Lightweight model for Serbian(latin) recognition|rec_rs_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rs_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rs_mobile_v2.0_rec_train.tar) |
|
||||||
| oc_mobile_v2.0_rec |Lightweight model for Occitan recognition|rec_oc_lite_train.yml|2.53M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/oc_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/oc_mobile_v2.0_rec_train.tar) |
|
| oc_mobile_v2.0_rec |Lightweight model for Occitan recognition|rec_oc_lite_train.yml|2.53M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/oc_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/oc_mobile_v2.0_rec_train.tar) |
|
||||||
| mr_mobile_v2.0_rec |Lightweight model for Marathi recognition|rec_mr_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/mr_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/mr_mobile_v2.0_rec_train.tar) |
|
| mr_mobile_v2.0_rec |Lightweight model for Marathi recognition|rec_mr_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/mr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/mr_mobile_v2.0_rec_train.tar) |
|
||||||
| ne_mobile_v2.0_rec |Lightweight model for Nepali recognition|rec_ne_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ne_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ne_mobile_v2.0_rec_train.tar) |
|
| ne_mobile_v2.0_rec |Lightweight model for Nepali recognition|rec_ne_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ne_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ne_mobile_v2.0_rec_train.tar) |
|
||||||
| rsc_mobile_v2.0_rec |Lightweight model for Serbian(cyrillic) recognition|rec_rsc_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rsc_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rsc_mobile_v2.0_rec_train.tar) |
|
| rsc_mobile_v2.0_rec |Lightweight model for Serbian(cyrillic) recognition|rec_rsc_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rsc_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/rsc_mobile_v2.0_rec_train.tar) |
|
||||||
| bg_mobile_v2.0_rec |Lightweight model for Bulgarian recognition|rec_bg_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/bg_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/bg_mobile_v2.0_rec_train.tar) |
|
| bg_mobile_v2.0_rec |Lightweight model for Bulgarian recognition|rec_bg_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/bg_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/bg_mobile_v2.0_rec_train.tar) |
|
||||||
| uk_mobile_v2.0_rec |Lightweight model for Ukranian recognition|rec_uk_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_train.tar) |
|
| uk_mobile_v2.0_rec |Lightweight model for Ukranian recognition|rec_uk_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/uk_mobile_v2.0_rec_train.tar) |
|
||||||
| be_mobile_v2.0_rec |Lightweight model for Belarusian recognition|rec_be_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_train.tar) |
|
| be_mobile_v2.0_rec |Lightweight model for Belarusian recognition|rec_be_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/be_mobile_v2.0_rec_train.tar) |
|
||||||
| te_mobile_v2.0_rec |Lightweight model for Telugu recognition|rec_te_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
|
| te_mobile_v2.0_rec |Lightweight model for Telugu recognition|rec_te_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_train.tar) |
|
||||||
| ka_mobile_v2.0_rec |Lightweight model for Kannada recognition|[rec_ka_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
|
| ka_mobile_v2.0_rec |Lightweight model for Kannada recognition|rec_ka_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_train.tar) |
|
||||||
| ta_mobile_v2.0_rec |Lightweight model for Tamil recognition|rec_ta_lite_train.yml|2.63M|[inference mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [trained mode](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|
| ta_mobile_v2.0_rec |Lightweight model for Tamil recognition|rec_ta_lite_train.yml|2.63M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_train.tar) |
|
||||||
|
|
||||||
|
|
||||||
<a name="Angle"></a>
|
<a name="Angle"></a>
|
||||||
|
@ -120,6 +124,5 @@ python3 generate_multi_language_configs.py -l it \
|
||||||
|
|
||||||
|model name|description|config|model size|download|
|
|model name|description|config|model size|download|
|
||||||
| --- | --- | --- | --- | --- |
|
| --- | --- | --- | --- | --- |
|
||||||
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| |inference model (coming soon) / trained model / slim model|
|
|ch_ppocr_mobile_slim_v2.0_cls|Slim quantized model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)| | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_train.tar) |
|
||||||
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
|ch_ppocr_mobile_v2.0_cls|Original model|[cls_mv3.yml](../../configs/cls/cls_mv3.yml)|1.38M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |
|
||||||
|
|
||||||
|
|
After Width: | Height: | Size: 352 KiB |
After Width: | Height: | Size: 121 KiB |
Before Width: | Height: | Size: 4.7 KiB After Width: | Height: | Size: 4.7 KiB |
Before Width: | Height: | Size: 3.6 KiB After Width: | Height: | Size: 3.6 KiB |
Before Width: | Height: | Size: 6.4 KiB After Width: | Height: | Size: 6.4 KiB |
Before Width: | Height: | Size: 4.5 KiB After Width: | Height: | Size: 4.5 KiB |
Before Width: | Height: | Size: 6.8 KiB After Width: | Height: | Size: 6.8 KiB |
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 65 KiB After Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 73 KiB |
Before Width: | Height: | Size: 5.7 KiB After Width: | Height: | Size: 5.7 KiB |
Before Width: | Height: | Size: 6.5 KiB After Width: | Height: | Size: 6.5 KiB |
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 9.4 KiB After Width: | Height: | Size: 9.4 KiB |
Before Width: | Height: | Size: 6.7 KiB After Width: | Height: | Size: 6.7 KiB |
Before Width: | Height: | Size: 7.8 KiB After Width: | Height: | Size: 7.8 KiB |
Before Width: | Height: | Size: 4.4 KiB After Width: | Height: | Size: 4.4 KiB |
Before Width: | Height: | Size: 2.8 KiB After Width: | Height: | Size: 2.8 KiB |
Before Width: | Height: | Size: 5.4 KiB After Width: | Height: | Size: 5.4 KiB |
Before Width: | Height: | Size: 4.1 KiB After Width: | Height: | Size: 4.1 KiB |
Before Width: | Height: | Size: 2.7 KiB After Width: | Height: | Size: 2.7 KiB |
Before Width: | Height: | Size: 6.5 KiB After Width: | Height: | Size: 6.5 KiB |
Before Width: | Height: | Size: 3.9 KiB After Width: | Height: | Size: 3.9 KiB |
Before Width: | Height: | Size: 5.3 KiB After Width: | Height: | Size: 5.3 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 11 KiB After Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 12 KiB After Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 6.0 KiB After Width: | Height: | Size: 6.0 KiB |
Before Width: | Height: | Size: 4.5 KiB After Width: | Height: | Size: 4.5 KiB |
Before Width: | Height: | Size: 6.6 KiB After Width: | Height: | Size: 6.6 KiB |
Before Width: | Height: | Size: 4.1 KiB After Width: | Height: | Size: 4.1 KiB |
Before Width: | Height: | Size: 4.4 KiB After Width: | Height: | Size: 4.4 KiB |
Before Width: | Height: | Size: 8.5 KiB After Width: | Height: | Size: 8.5 KiB |
Before Width: | Height: | Size: 7.0 KiB After Width: | Height: | Size: 7.0 KiB |
Before Width: | Height: | Size: 6.1 KiB After Width: | Height: | Size: 6.1 KiB |
Before Width: | Height: | Size: 5.2 KiB After Width: | Height: | Size: 5.2 KiB |
Before Width: | Height: | Size: 8.2 KiB After Width: | Height: | Size: 8.2 KiB |
Before Width: | Height: | Size: 6.0 KiB After Width: | Height: | Size: 6.0 KiB |
Before Width: | Height: | Size: 4.4 KiB After Width: | Height: | Size: 4.4 KiB |
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 5.0 KiB After Width: | Height: | Size: 5.0 KiB |
Before Width: | Height: | Size: 4.7 KiB After Width: | Height: | Size: 4.7 KiB |
Before Width: | Height: | Size: 5.6 KiB After Width: | Height: | Size: 5.6 KiB |
Before Width: | Height: | Size: 4.8 KiB After Width: | Height: | Size: 4.8 KiB |
BIN
doc/joinus.PNG
Before Width: | Height: | Size: 109 KiB After Width: | Height: | Size: 107 KiB |
|
@ -290,7 +290,9 @@ class PaddleOCR(predict_system.TextSystem):
|
||||||
image_file = img
|
image_file = img
|
||||||
img, flag = check_and_read_gif(image_file)
|
img, flag = check_and_read_gif(image_file)
|
||||||
if not flag:
|
if not flag:
|
||||||
img = cv2.imread(image_file)
|
with open(image_file, 'rb') as f:
|
||||||
|
np_arr = np.frombuffer(f.read(), dtype=np.uint8)
|
||||||
|
img = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
|
||||||
if img is None:
|
if img is None:
|
||||||
logger.error("error in loading image:{}".format(image_file))
|
logger.error("error in loading image:{}".format(image_file))
|
||||||
return None
|
return None
|
||||||
|
|
|
@ -51,7 +51,7 @@ signal.signal(signal.SIGINT, term_mp)
|
||||||
signal.signal(signal.SIGTERM, term_mp)
|
signal.signal(signal.SIGTERM, term_mp)
|
||||||
|
|
||||||
|
|
||||||
def build_dataloader(config, mode, device, logger):
|
def build_dataloader(config, mode, device, logger, seed=None):
|
||||||
config = copy.deepcopy(config)
|
config = copy.deepcopy(config)
|
||||||
|
|
||||||
support_dict = ['SimpleDataSet', 'LMDBDateSet']
|
support_dict = ['SimpleDataSet', 'LMDBDateSet']
|
||||||
|
@ -61,7 +61,7 @@ def build_dataloader(config, mode, device, logger):
|
||||||
assert mode in ['Train', 'Eval', 'Test'
|
assert mode in ['Train', 'Eval', 'Test'
|
||||||
], "Mode should be Train, Eval or Test."
|
], "Mode should be Train, Eval or Test."
|
||||||
|
|
||||||
dataset = eval(module_name)(config, mode, logger)
|
dataset = eval(module_name)(config, mode, logger, seed)
|
||||||
loader_config = config[mode]['loader']
|
loader_config = config[mode]['loader']
|
||||||
batch_size = loader_config['batch_size_per_card']
|
batch_size = loader_config['batch_size_per_card']
|
||||||
drop_last = loader_config['drop_last']
|
drop_last = loader_config['drop_last']
|
||||||
|
|
|
@ -24,11 +24,11 @@ __all__ = ['SASTProcessTrain']
|
||||||
|
|
||||||
class SASTProcessTrain(object):
|
class SASTProcessTrain(object):
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
image_shape = [512, 512],
|
image_shape=[512, 512],
|
||||||
min_crop_size = 24,
|
min_crop_size=24,
|
||||||
min_crop_side_ratio = 0.3,
|
min_crop_side_ratio=0.3,
|
||||||
min_text_size = 10,
|
min_text_size=10,
|
||||||
max_text_size = 512,
|
max_text_size=512,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
self.input_size = image_shape[1]
|
self.input_size = image_shape[1]
|
||||||
self.min_crop_size = min_crop_size
|
self.min_crop_size = min_crop_size
|
||||||
|
@ -42,12 +42,10 @@ class SASTProcessTrain(object):
|
||||||
:param poly:
|
:param poly:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
edge = [
|
edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
||||||
(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
|
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
||||||
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
|
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
||||||
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
|
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
|
||||||
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])
|
|
||||||
]
|
|
||||||
return np.sum(edge) / 2.
|
return np.sum(edge) / 2.
|
||||||
|
|
||||||
def gen_quad_from_poly(self, poly):
|
def gen_quad_from_poly(self, poly):
|
||||||
|
@ -57,7 +55,8 @@ class SASTProcessTrain(object):
|
||||||
point_num = poly.shape[0]
|
point_num = poly.shape[0]
|
||||||
min_area_quad = np.zeros((4, 2), dtype=np.float32)
|
min_area_quad = np.zeros((4, 2), dtype=np.float32)
|
||||||
if True:
|
if True:
|
||||||
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
|
rect = cv2.minAreaRect(poly.astype(
|
||||||
|
np.int32)) # (center (x,y), (width, height), angle of rotation)
|
||||||
center_point = rect[0]
|
center_point = rect[0]
|
||||||
box = np.array(cv2.boxPoints(rect))
|
box = np.array(cv2.boxPoints(rect))
|
||||||
|
|
||||||
|
@ -102,23 +101,33 @@ class SASTProcessTrain(object):
|
||||||
if p_area > 0:
|
if p_area > 0:
|
||||||
if tag == False:
|
if tag == False:
|
||||||
print('poly in wrong direction')
|
print('poly in wrong direction')
|
||||||
tag = True # reversed cases should be ignore
|
tag = True # reversed cases should be ignore
|
||||||
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
|
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2,
|
||||||
|
1), :]
|
||||||
quad = quad[(0, 3, 2, 1), :]
|
quad = quad[(0, 3, 2, 1), :]
|
||||||
|
|
||||||
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] - quad[2])
|
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] -
|
||||||
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
|
quad[2])
|
||||||
|
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] -
|
||||||
|
quad[2])
|
||||||
hv_tag = 1
|
hv_tag = 1
|
||||||
|
|
||||||
if len_w * 2.0 < len_h:
|
if len_w * 2.0 < len_h:
|
||||||
hv_tag = 0
|
hv_tag = 0
|
||||||
|
|
||||||
validated_polys.append(poly)
|
validated_polys.append(poly)
|
||||||
validated_tags.append(tag)
|
validated_tags.append(tag)
|
||||||
hv_tags.append(hv_tag)
|
hv_tags.append(hv_tag)
|
||||||
return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)
|
return np.array(validated_polys), np.array(validated_tags), np.array(
|
||||||
|
hv_tags)
|
||||||
|
|
||||||
def crop_area(self, im, polys, tags, hv_tags, crop_background=False, max_tries=25):
|
def crop_area(self,
|
||||||
|
im,
|
||||||
|
polys,
|
||||||
|
tags,
|
||||||
|
hv_tags,
|
||||||
|
crop_background=False,
|
||||||
|
max_tries=25):
|
||||||
"""
|
"""
|
||||||
make random crop from the input image
|
make random crop from the input image
|
||||||
:param im:
|
:param im:
|
||||||
|
@ -137,10 +146,10 @@ class SASTProcessTrain(object):
|
||||||
poly = np.round(poly, decimals=0).astype(np.int32)
|
poly = np.round(poly, decimals=0).astype(np.int32)
|
||||||
minx = np.min(poly[:, 0])
|
minx = np.min(poly[:, 0])
|
||||||
maxx = np.max(poly[:, 0])
|
maxx = np.max(poly[:, 0])
|
||||||
w_array[minx + pad_w: maxx + pad_w] = 1
|
w_array[minx + pad_w:maxx + pad_w] = 1
|
||||||
miny = np.min(poly[:, 1])
|
miny = np.min(poly[:, 1])
|
||||||
maxy = np.max(poly[:, 1])
|
maxy = np.max(poly[:, 1])
|
||||||
h_array[miny + pad_h: maxy + pad_h] = 1
|
h_array[miny + pad_h:maxy + pad_h] = 1
|
||||||
# ensure the cropped area not across a text
|
# ensure the cropped area not across a text
|
||||||
h_axis = np.where(h_array == 0)[0]
|
h_axis = np.where(h_array == 0)[0]
|
||||||
w_axis = np.where(w_array == 0)[0]
|
w_axis = np.where(w_array == 0)[0]
|
||||||
|
@ -166,17 +175,18 @@ class SASTProcessTrain(object):
|
||||||
if polys.shape[0] != 0:
|
if polys.shape[0] != 0:
|
||||||
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
|
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
|
||||||
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
|
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
|
||||||
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
selected_polys = np.where(
|
||||||
|
np.sum(poly_axis_in_area, axis=1) == 4)[0]
|
||||||
else:
|
else:
|
||||||
selected_polys = []
|
selected_polys = []
|
||||||
if len(selected_polys) == 0:
|
if len(selected_polys) == 0:
|
||||||
# no text in this area
|
# no text in this area
|
||||||
if crop_background:
|
if crop_background:
|
||||||
return im[ymin : ymax + 1, xmin : xmax + 1, :], \
|
return im[ymin : ymax + 1, xmin : xmax + 1, :], \
|
||||||
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
|
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys]
|
||||||
else:
|
else:
|
||||||
continue
|
continue
|
||||||
im = im[ymin: ymax + 1, xmin: xmax + 1, :]
|
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
|
||||||
polys = polys[selected_polys]
|
polys = polys[selected_polys]
|
||||||
tags = tags[selected_polys]
|
tags = tags[selected_polys]
|
||||||
hv_tags = hv_tags[selected_polys]
|
hv_tags = hv_tags[selected_polys]
|
||||||
|
@ -192,18 +202,28 @@ class SASTProcessTrain(object):
|
||||||
width_list = []
|
width_list = []
|
||||||
height_list = []
|
height_list = []
|
||||||
for quad in poly_quads:
|
for quad in poly_quads:
|
||||||
quad_w = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
|
quad_w = (np.linalg.norm(quad[0] - quad[1]) +
|
||||||
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
|
np.linalg.norm(quad[2] - quad[3])) / 2.0
|
||||||
|
quad_h = (np.linalg.norm(quad[0] - quad[3]) +
|
||||||
|
np.linalg.norm(quad[2] - quad[1])) / 2.0
|
||||||
width_list.append(quad_w)
|
width_list.append(quad_w)
|
||||||
height_list.append(quad_h)
|
height_list.append(quad_h)
|
||||||
norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
|
norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
|
||||||
average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)
|
average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)
|
||||||
|
|
||||||
for quad in poly_quads:
|
for quad in poly_quads:
|
||||||
direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
|
direct_vector_full = (
|
||||||
direct_vector = direct_vector_full / (np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
|
(quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
|
||||||
direction_label = tuple(map(float, [direct_vector[0], direct_vector[1], 1.0 / (average_height + 1e-6)]))
|
direct_vector = direct_vector_full / (
|
||||||
cv2.fillPoly(direction_map, quad.round().astype(np.int32)[np.newaxis, :, :], direction_label)
|
np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
|
||||||
|
direction_label = tuple(
|
||||||
|
map(float, [
|
||||||
|
direct_vector[0], direct_vector[1], 1.0 / (average_height +
|
||||||
|
1e-6)
|
||||||
|
]))
|
||||||
|
cv2.fillPoly(direction_map,
|
||||||
|
quad.round().astype(np.int32)[np.newaxis, :, :],
|
||||||
|
direction_label)
|
||||||
return direction_map
|
return direction_map
|
||||||
|
|
||||||
def calculate_average_height(self, poly_quads):
|
def calculate_average_height(self, poly_quads):
|
||||||
|
@ -211,13 +231,19 @@ class SASTProcessTrain(object):
|
||||||
"""
|
"""
|
||||||
height_list = []
|
height_list = []
|
||||||
for quad in poly_quads:
|
for quad in poly_quads:
|
||||||
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
|
quad_h = (np.linalg.norm(quad[0] - quad[3]) +
|
||||||
|
np.linalg.norm(quad[2] - quad[1])) / 2.0
|
||||||
height_list.append(quad_h)
|
height_list.append(quad_h)
|
||||||
average_height = max(sum(height_list) / len(height_list), 1.0)
|
average_height = max(sum(height_list) / len(height_list), 1.0)
|
||||||
return average_height
|
return average_height
|
||||||
|
|
||||||
def generate_tcl_label(self, hw, polys, tags, ds_ratio,
|
def generate_tcl_label(self,
|
||||||
tcl_ratio=0.3, shrink_ratio_of_width=0.15):
|
hw,
|
||||||
|
polys,
|
||||||
|
tags,
|
||||||
|
ds_ratio,
|
||||||
|
tcl_ratio=0.3,
|
||||||
|
shrink_ratio_of_width=0.15):
|
||||||
"""
|
"""
|
||||||
Generate polygon.
|
Generate polygon.
|
||||||
"""
|
"""
|
||||||
|
@ -225,21 +251,30 @@ class SASTProcessTrain(object):
|
||||||
h, w = int(h * ds_ratio), int(w * ds_ratio)
|
h, w = int(h * ds_ratio), int(w * ds_ratio)
|
||||||
polys = polys * ds_ratio
|
polys = polys * ds_ratio
|
||||||
|
|
||||||
score_map = np.zeros((h, w,), dtype=np.float32)
|
score_map = np.zeros(
|
||||||
|
(
|
||||||
|
h,
|
||||||
|
w, ), dtype=np.float32)
|
||||||
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
|
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
|
||||||
training_mask = np.ones((h, w,), dtype=np.float32)
|
training_mask = np.ones(
|
||||||
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape([1, 1, 3]).astype(np.float32)
|
(
|
||||||
|
h,
|
||||||
|
w, ), dtype=np.float32)
|
||||||
|
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape(
|
||||||
|
[1, 1, 3]).astype(np.float32)
|
||||||
|
|
||||||
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
|
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
|
||||||
poly = poly_tag[0]
|
poly = poly_tag[0]
|
||||||
tag = poly_tag[1]
|
tag = poly_tag[1]
|
||||||
|
|
||||||
# generate min_area_quad
|
# generate min_area_quad
|
||||||
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
||||||
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
min_area_quad_h = 0.5 * (
|
||||||
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
||||||
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
||||||
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
min_area_quad_w = 0.5 * (
|
||||||
|
np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
||||||
|
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
||||||
|
|
||||||
if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
|
if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
|
||||||
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
|
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
|
||||||
|
@ -247,25 +282,37 @@ class SASTProcessTrain(object):
|
||||||
|
|
||||||
if tag:
|
if tag:
|
||||||
# continue
|
# continue
|
||||||
cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15)
|
cv2.fillPoly(training_mask,
|
||||||
|
poly.astype(np.int32)[np.newaxis, :, :], 0.15)
|
||||||
else:
|
else:
|
||||||
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
||||||
tcl_quads = self.poly2quads(tcl_poly)
|
tcl_quads = self.poly2quads(tcl_poly)
|
||||||
poly_quads = self.poly2quads(poly)
|
poly_quads = self.poly2quads(poly)
|
||||||
# stcl map
|
# stcl map
|
||||||
stcl_quads, quad_index = self.shrink_poly_along_width(tcl_quads, shrink_ratio_of_width=shrink_ratio_of_width,
|
stcl_quads, quad_index = self.shrink_poly_along_width(
|
||||||
expand_height_ratio=1.0 / tcl_ratio)
|
tcl_quads,
|
||||||
|
shrink_ratio_of_width=shrink_ratio_of_width,
|
||||||
|
expand_height_ratio=1.0 / tcl_ratio)
|
||||||
# generate tcl map
|
# generate tcl map
|
||||||
cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)
|
cv2.fillPoly(score_map,
|
||||||
|
np.round(stcl_quads).astype(np.int32), 1.0)
|
||||||
|
|
||||||
# generate tbo map
|
# generate tbo map
|
||||||
for idx, quad in enumerate(stcl_quads):
|
for idx, quad in enumerate(stcl_quads):
|
||||||
quad_mask = np.zeros((h, w), dtype=np.float32)
|
quad_mask = np.zeros((h, w), dtype=np.float32)
|
||||||
quad_mask = cv2.fillPoly(quad_mask, np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
|
quad_mask = cv2.fillPoly(
|
||||||
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]], quad_mask, tbo_map)
|
quad_mask,
|
||||||
|
np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
|
||||||
|
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]],
|
||||||
|
quad_mask, tbo_map)
|
||||||
return score_map, tbo_map, training_mask
|
return score_map, tbo_map, training_mask
|
||||||
|
|
||||||
def generate_tvo_and_tco(self, hw, polys, tags, tcl_ratio=0.3, ds_ratio=0.25):
|
def generate_tvo_and_tco(self,
|
||||||
|
hw,
|
||||||
|
polys,
|
||||||
|
tags,
|
||||||
|
tcl_ratio=0.3,
|
||||||
|
ds_ratio=0.25):
|
||||||
"""
|
"""
|
||||||
Generate tcl map, tvo map and tbo map.
|
Generate tcl map, tvo map and tbo map.
|
||||||
"""
|
"""
|
||||||
|
@ -297,35 +344,44 @@ class SASTProcessTrain(object):
|
||||||
|
|
||||||
# generate min_area_quad
|
# generate min_area_quad
|
||||||
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
|
||||||
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
min_area_quad_h = 0.5 * (
|
||||||
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
|
||||||
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
|
||||||
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
min_area_quad_w = 0.5 * (
|
||||||
|
np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
|
||||||
|
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
|
||||||
|
|
||||||
# generate tcl map and text, 128 * 128
|
# generate tcl map and text, 128 * 128
|
||||||
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
tcl_poly = self.poly2tcl(poly, tcl_ratio)
|
||||||
|
|
||||||
# generate poly_tv_xy_map
|
# generate poly_tv_xy_map
|
||||||
for idx in range(4):
|
for idx in range(4):
|
||||||
cv2.fillPoly(poly_tv_xy_map[2 * idx],
|
cv2.fillPoly(
|
||||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
poly_tv_xy_map[2 * idx],
|
||||||
float(min(max(min_area_quad[idx, 0], 0), w)))
|
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||||
cv2.fillPoly(poly_tv_xy_map[2 * idx + 1],
|
float(min(max(min_area_quad[idx, 0], 0), w)))
|
||||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
cv2.fillPoly(
|
||||||
float(min(max(min_area_quad[idx, 1], 0), h)))
|
poly_tv_xy_map[2 * idx + 1],
|
||||||
|
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||||
|
float(min(max(min_area_quad[idx, 1], 0), h)))
|
||||||
|
|
||||||
# generate poly_tc_xy_map
|
# generate poly_tc_xy_map
|
||||||
for idx in range(2):
|
for idx in range(2):
|
||||||
cv2.fillPoly(poly_tc_xy_map[idx],
|
cv2.fillPoly(
|
||||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), float(center_point[idx]))
|
poly_tc_xy_map[idx],
|
||||||
|
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||||
|
float(center_point[idx]))
|
||||||
|
|
||||||
# generate poly_short_edge_map
|
# generate poly_short_edge_map
|
||||||
cv2.fillPoly(poly_short_edge_map,
|
cv2.fillPoly(
|
||||||
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
poly_short_edge_map,
|
||||||
float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
|
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||||
|
float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
|
||||||
|
|
||||||
# generate poly_mask and training_mask
|
# generate poly_mask and training_mask
|
||||||
cv2.fillPoly(poly_mask, np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), 1)
|
cv2.fillPoly(poly_mask,
|
||||||
|
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
|
||||||
|
1)
|
||||||
|
|
||||||
tvo_map *= poly_mask
|
tvo_map *= poly_mask
|
||||||
tvo_map[:8] -= poly_tv_xy_map
|
tvo_map[:8] -= poly_tv_xy_map
|
||||||
|
@ -356,7 +412,8 @@ class SASTProcessTrain(object):
|
||||||
elif point_num > 4:
|
elif point_num > 4:
|
||||||
vector_1 = poly[0] - poly[1]
|
vector_1 = poly[0] - poly[1]
|
||||||
vector_2 = poly[1] - poly[2]
|
vector_2 = poly[1] - poly[2]
|
||||||
cos_theta = np.dot(vector_1, vector_2) / (np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
|
cos_theta = np.dot(vector_1, vector_2) / (
|
||||||
|
np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
|
||||||
theta = np.arccos(np.round(cos_theta, decimals=4))
|
theta = np.arccos(np.round(cos_theta, decimals=4))
|
||||||
|
|
||||||
if abs(theta) > (70 / 180 * math.pi):
|
if abs(theta) > (70 / 180 * math.pi):
|
||||||
|
@ -374,7 +431,8 @@ class SASTProcessTrain(object):
|
||||||
min_area_quad = poly
|
min_area_quad = poly
|
||||||
center_point = np.sum(poly, axis=0) / 4
|
center_point = np.sum(poly, axis=0) / 4
|
||||||
else:
|
else:
|
||||||
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
|
rect = cv2.minAreaRect(poly.astype(
|
||||||
|
np.int32)) # (center (x,y), (width, height), angle of rotation)
|
||||||
center_point = rect[0]
|
center_point = rect[0]
|
||||||
box = np.array(cv2.boxPoints(rect))
|
box = np.array(cv2.boxPoints(rect))
|
||||||
|
|
||||||
|
@ -394,16 +452,23 @@ class SASTProcessTrain(object):
|
||||||
|
|
||||||
return min_area_quad, center_point
|
return min_area_quad, center_point
|
||||||
|
|
||||||
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
|
def shrink_quad_along_width(self,
|
||||||
|
quad,
|
||||||
|
begin_width_ratio=0.,
|
||||||
|
end_width_ratio=1.):
|
||||||
"""
|
"""
|
||||||
Generate shrink_quad_along_width.
|
Generate shrink_quad_along_width.
|
||||||
"""
|
"""
|
||||||
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
|
ratio_pair = np.array(
|
||||||
|
[[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
|
||||||
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
|
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
|
||||||
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
|
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
|
||||||
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
|
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
|
||||||
|
|
||||||
def shrink_poly_along_width(self, quads, shrink_ratio_of_width, expand_height_ratio=1.0):
|
def shrink_poly_along_width(self,
|
||||||
|
quads,
|
||||||
|
shrink_ratio_of_width,
|
||||||
|
expand_height_ratio=1.0):
|
||||||
"""
|
"""
|
||||||
shrink poly with given length.
|
shrink poly with given length.
|
||||||
"""
|
"""
|
||||||
|
@ -421,22 +486,28 @@ class SASTProcessTrain(object):
|
||||||
upper_edge_list.append(upper_edge_len)
|
upper_edge_list.append(upper_edge_len)
|
||||||
|
|
||||||
# length of left edge and right edge.
|
# length of left edge and right edge.
|
||||||
left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
|
left_length = np.linalg.norm(quads[0][0] - quads[0][
|
||||||
right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio
|
3]) * expand_height_ratio
|
||||||
|
right_length = np.linalg.norm(quads[-1][1] - quads[-1][
|
||||||
|
2]) * expand_height_ratio
|
||||||
|
|
||||||
shrink_length = min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
|
shrink_length = min(left_length, right_length,
|
||||||
|
sum(upper_edge_list)) * shrink_ratio_of_width
|
||||||
# shrinking length
|
# shrinking length
|
||||||
upper_len_left = shrink_length
|
upper_len_left = shrink_length
|
||||||
upper_len_right = sum(upper_edge_list) - shrink_length
|
upper_len_right = sum(upper_edge_list) - shrink_length
|
||||||
|
|
||||||
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
|
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
|
||||||
left_quad = self.shrink_quad_along_width(quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
|
left_quad = self.shrink_quad_along_width(
|
||||||
|
quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
|
||||||
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
|
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
|
||||||
right_quad = self.shrink_quad_along_width(quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
|
right_quad = self.shrink_quad_along_width(
|
||||||
|
quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
|
||||||
|
|
||||||
out_quad_list = []
|
out_quad_list = []
|
||||||
if left_idx == right_idx:
|
if left_idx == right_idx:
|
||||||
out_quad_list.append([left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
|
out_quad_list.append(
|
||||||
|
[left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
|
||||||
else:
|
else:
|
||||||
out_quad_list.append(left_quad)
|
out_quad_list.append(left_quad)
|
||||||
for idx in range(left_idx + 1, right_idx):
|
for idx in range(left_idx + 1, right_idx):
|
||||||
|
@ -500,7 +571,8 @@ class SASTProcessTrain(object):
|
||||||
"""
|
"""
|
||||||
Generate center line by poly clock-wise point. (4, 2)
|
Generate center line by poly clock-wise point. (4, 2)
|
||||||
"""
|
"""
|
||||||
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
ratio_pair = np.array(
|
||||||
|
[[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
||||||
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
|
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
|
||||||
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
|
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
|
||||||
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
|
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
|
||||||
|
@ -509,12 +581,14 @@ class SASTProcessTrain(object):
|
||||||
"""
|
"""
|
||||||
Generate center line by poly clock-wise point.
|
Generate center line by poly clock-wise point.
|
||||||
"""
|
"""
|
||||||
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
ratio_pair = np.array(
|
||||||
|
[[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
|
||||||
tcl_poly = np.zeros_like(poly)
|
tcl_poly = np.zeros_like(poly)
|
||||||
point_num = poly.shape[0]
|
point_num = poly.shape[0]
|
||||||
|
|
||||||
for idx in range(point_num // 2):
|
for idx in range(point_num // 2):
|
||||||
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
|
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]
|
||||||
|
) * ratio_pair
|
||||||
tcl_poly[idx] = point_pair[0]
|
tcl_poly[idx] = point_pair[0]
|
||||||
tcl_poly[point_num - 1 - idx] = point_pair[1]
|
tcl_poly[point_num - 1 - idx] = point_pair[1]
|
||||||
return tcl_poly
|
return tcl_poly
|
||||||
|
@ -527,8 +601,10 @@ class SASTProcessTrain(object):
|
||||||
up_line = self.line_cross_two_point(quad[0], quad[1])
|
up_line = self.line_cross_two_point(quad[0], quad[1])
|
||||||
lower_line = self.line_cross_two_point(quad[3], quad[2])
|
lower_line = self.line_cross_two_point(quad[3], quad[2])
|
||||||
|
|
||||||
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2]))
|
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) +
|
||||||
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]))
|
np.linalg.norm(quad[1] - quad[2]))
|
||||||
|
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) +
|
||||||
|
np.linalg.norm(quad[2] - quad[3]))
|
||||||
|
|
||||||
# average angle of left and right line.
|
# average angle of left and right line.
|
||||||
angle = self.average_angle(quad)
|
angle = self.average_angle(quad)
|
||||||
|
@ -565,7 +641,8 @@ class SASTProcessTrain(object):
|
||||||
quad_num = point_num // 2 - 1
|
quad_num = point_num // 2 - 1
|
||||||
for idx in range(quad_num):
|
for idx in range(quad_num):
|
||||||
# reshape and adjust to clock-wise
|
# reshape and adjust to clock-wise
|
||||||
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]])
|
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]
|
||||||
|
).reshape(4, 2)[[0, 2, 3, 1]])
|
||||||
|
|
||||||
return np.array(quad_list)
|
return np.array(quad_list)
|
||||||
|
|
||||||
|
@ -579,7 +656,8 @@ class SASTProcessTrain(object):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
h, w, _ = im.shape
|
h, w, _ = im.shape
|
||||||
text_polys, text_tags, hv_tags = self.check_and_validate_polys(text_polys, text_tags, (h, w))
|
text_polys, text_tags, hv_tags = self.check_and_validate_polys(
|
||||||
|
text_polys, text_tags, (h, w))
|
||||||
|
|
||||||
if text_polys.shape[0] == 0:
|
if text_polys.shape[0] == 0:
|
||||||
return None
|
return None
|
||||||
|
@ -591,7 +669,7 @@ class SASTProcessTrain(object):
|
||||||
if np.random.rand() < 0.5:
|
if np.random.rand() < 0.5:
|
||||||
asp_scale = 1.0 / asp_scale
|
asp_scale = 1.0 / asp_scale
|
||||||
asp_scale = math.sqrt(asp_scale)
|
asp_scale = math.sqrt(asp_scale)
|
||||||
|
|
||||||
asp_wx = asp_scale
|
asp_wx = asp_scale
|
||||||
asp_hy = 1.0 / asp_scale
|
asp_hy = 1.0 / asp_scale
|
||||||
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
|
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
|
||||||
|
@ -610,7 +688,7 @@ class SASTProcessTrain(object):
|
||||||
#no background
|
#no background
|
||||||
im, text_polys, text_tags, hv_tags = self.crop_area(im, \
|
im, text_polys, text_tags, hv_tags = self.crop_area(im, \
|
||||||
text_polys, text_tags, hv_tags, crop_background=False)
|
text_polys, text_tags, hv_tags, crop_background=False)
|
||||||
|
|
||||||
if text_polys.shape[0] == 0:
|
if text_polys.shape[0] == 0:
|
||||||
return None
|
return None
|
||||||
#continue for all ignore case
|
#continue for all ignore case
|
||||||
|
@ -621,17 +699,18 @@ class SASTProcessTrain(object):
|
||||||
return None
|
return None
|
||||||
#resize image
|
#resize image
|
||||||
std_ratio = float(self.input_size) / max(new_w, new_h)
|
std_ratio = float(self.input_size) / max(new_w, new_h)
|
||||||
rand_scales = np.array([0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
|
rand_scales = np.array(
|
||||||
|
[0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
|
||||||
rz_scale = std_ratio * np.random.choice(rand_scales)
|
rz_scale = std_ratio * np.random.choice(rand_scales)
|
||||||
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
|
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
|
||||||
text_polys[:, :, 0] *= rz_scale
|
text_polys[:, :, 0] *= rz_scale
|
||||||
text_polys[:, :, 1] *= rz_scale
|
text_polys[:, :, 1] *= rz_scale
|
||||||
|
|
||||||
#add gaussian blur
|
#add gaussian blur
|
||||||
if np.random.rand() < 0.1 * 0.5:
|
if np.random.rand() < 0.1 * 0.5:
|
||||||
ks = np.random.permutation(5)[0] + 1
|
ks = np.random.permutation(5)[0] + 1
|
||||||
ks = int(ks/2)*2 + 1
|
ks = int(ks / 2) * 2 + 1
|
||||||
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
|
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
|
||||||
#add brighter
|
#add brighter
|
||||||
if np.random.rand() < 0.1 * 0.5:
|
if np.random.rand() < 0.1 * 0.5:
|
||||||
im = im * (1.0 + np.random.rand() * 0.5)
|
im = im * (1.0 + np.random.rand() * 0.5)
|
||||||
|
@ -640,13 +719,14 @@ class SASTProcessTrain(object):
|
||||||
if np.random.rand() < 0.1 * 0.5:
|
if np.random.rand() < 0.1 * 0.5:
|
||||||
im = im * (1.0 - np.random.rand() * 0.5)
|
im = im * (1.0 - np.random.rand() * 0.5)
|
||||||
im = np.clip(im, 0.0, 255.0)
|
im = np.clip(im, 0.0, 255.0)
|
||||||
|
|
||||||
# Padding the im to [input_size, input_size]
|
# Padding the im to [input_size, input_size]
|
||||||
new_h, new_w, _ = im.shape
|
new_h, new_w, _ = im.shape
|
||||||
if min(new_w, new_h) < self.input_size * 0.5:
|
if min(new_w, new_h) < self.input_size * 0.5:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
im_padded = np.ones((self.input_size, self.input_size, 3), dtype=np.float32)
|
im_padded = np.ones(
|
||||||
|
(self.input_size, self.input_size, 3), dtype=np.float32)
|
||||||
im_padded[:, :, 2] = 0.485 * 255
|
im_padded[:, :, 2] = 0.485 * 255
|
||||||
im_padded[:, :, 1] = 0.456 * 255
|
im_padded[:, :, 1] = 0.456 * 255
|
||||||
im_padded[:, :, 0] = 0.406 * 255
|
im_padded[:, :, 0] = 0.406 * 255
|
||||||
|
@ -661,24 +741,29 @@ class SASTProcessTrain(object):
|
||||||
sw = int(np.random.rand() * del_w)
|
sw = int(np.random.rand() * del_w)
|
||||||
|
|
||||||
# Padding
|
# Padding
|
||||||
im_padded[sh: sh + new_h, sw: sw + new_w, :] = im.copy()
|
im_padded[sh:sh + new_h, sw:sw + new_w, :] = im.copy()
|
||||||
text_polys[:, :, 0] += sw
|
text_polys[:, :, 0] += sw
|
||||||
text_polys[:, :, 1] += sh
|
text_polys[:, :, 1] += sh
|
||||||
|
|
||||||
score_map, border_map, training_mask = self.generate_tcl_label((self.input_size, self.input_size),
|
score_map, border_map, training_mask = self.generate_tcl_label(
|
||||||
text_polys, text_tags, 0.25)
|
(self.input_size, self.input_size), text_polys, text_tags, 0.25)
|
||||||
|
|
||||||
# SAST head
|
# SAST head
|
||||||
tvo_map, tco_map = self.generate_tvo_and_tco((self.input_size, self.input_size), text_polys, text_tags, tcl_ratio=0.3, ds_ratio=0.25)
|
tvo_map, tco_map = self.generate_tvo_and_tco(
|
||||||
|
(self.input_size, self.input_size),
|
||||||
|
text_polys,
|
||||||
|
text_tags,
|
||||||
|
tcl_ratio=0.3,
|
||||||
|
ds_ratio=0.25)
|
||||||
# print("test--------tvo_map shape:", tvo_map.shape)
|
# print("test--------tvo_map shape:", tvo_map.shape)
|
||||||
|
|
||||||
im_padded[:, :, 2] -= 0.485 * 255
|
im_padded[:, :, 2] -= 0.485 * 255
|
||||||
im_padded[:, :, 1] -= 0.456 * 255
|
im_padded[:, :, 1] -= 0.456 * 255
|
||||||
im_padded[:, :, 0] -= 0.406 * 255
|
im_padded[:, :, 0] -= 0.406 * 255
|
||||||
im_padded[:, :, 2] /= (255.0 * 0.229)
|
im_padded[:, :, 2] /= (255.0 * 0.229)
|
||||||
im_padded[:, :, 1] /= (255.0 * 0.224)
|
im_padded[:, :, 1] /= (255.0 * 0.224)
|
||||||
im_padded[:, :, 0] /= (255.0 * 0.225)
|
im_padded[:, :, 0] /= (255.0 * 0.225)
|
||||||
im_padded = im_padded.transpose((2, 0, 1))
|
im_padded = im_padded.transpose((2, 0, 1))
|
||||||
|
|
||||||
data['image'] = im_padded[::-1, :, :]
|
data['image'] = im_padded[::-1, :, :]
|
||||||
data['score_map'] = score_map[np.newaxis, :, :]
|
data['score_map'] = score_map[np.newaxis, :, :]
|
||||||
|
@ -686,4 +771,4 @@ class SASTProcessTrain(object):
|
||||||
data['training_mask'] = training_mask[np.newaxis, :, :]
|
data['training_mask'] = training_mask[np.newaxis, :, :]
|
||||||
data['tvo_map'] = tvo_map.transpose((2, 0, 1))
|
data['tvo_map'] = tvo_map.transpose((2, 0, 1))
|
||||||
data['tco_map'] = tco_map.transpose((2, 0, 1))
|
data['tco_map'] = tco_map.transpose((2, 0, 1))
|
||||||
return data
|
return data
|
||||||
|
|
|
@ -21,7 +21,7 @@ from .imaug import transform, create_operators
|
||||||
|
|
||||||
|
|
||||||
class LMDBDateSet(Dataset):
|
class LMDBDateSet(Dataset):
|
||||||
def __init__(self, config, mode, logger):
|
def __init__(self, config, mode, logger, seed=None):
|
||||||
super(LMDBDateSet, self).__init__()
|
super(LMDBDateSet, self).__init__()
|
||||||
|
|
||||||
global_config = config['Global']
|
global_config = config['Global']
|
||||||
|
|
|
@ -20,7 +20,7 @@ from .imaug import transform, create_operators
|
||||||
|
|
||||||
|
|
||||||
class SimpleDataSet(Dataset):
|
class SimpleDataSet(Dataset):
|
||||||
def __init__(self, config, mode, logger):
|
def __init__(self, config, mode, logger, seed=None):
|
||||||
super(SimpleDataSet, self).__init__()
|
super(SimpleDataSet, self).__init__()
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
|
|
||||||
|
@ -41,6 +41,7 @@ class SimpleDataSet(Dataset):
|
||||||
self.data_dir = dataset_config['data_dir']
|
self.data_dir = dataset_config['data_dir']
|
||||||
self.do_shuffle = loader_config['shuffle']
|
self.do_shuffle = loader_config['shuffle']
|
||||||
|
|
||||||
|
self.seed = seed
|
||||||
logger.info("Initialize indexs of datasets:%s" % label_file_list)
|
logger.info("Initialize indexs of datasets:%s" % label_file_list)
|
||||||
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
|
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
|
||||||
self.data_idx_order_list = list(range(len(self.data_lines)))
|
self.data_idx_order_list = list(range(len(self.data_lines)))
|
||||||
|
@ -55,6 +56,7 @@ class SimpleDataSet(Dataset):
|
||||||
for idx, file in enumerate(file_list):
|
for idx, file in enumerate(file_list):
|
||||||
with open(file, "rb") as f:
|
with open(file, "rb") as f:
|
||||||
lines = f.readlines()
|
lines = f.readlines()
|
||||||
|
random.seed(self.seed)
|
||||||
lines = random.sample(lines,
|
lines = random.sample(lines,
|
||||||
round(len(lines) * ratio_list[idx]))
|
round(len(lines) * ratio_list[idx]))
|
||||||
data_lines.extend(lines)
|
data_lines.extend(lines)
|
||||||
|
@ -62,6 +64,7 @@ class SimpleDataSet(Dataset):
|
||||||
|
|
||||||
def shuffle_data_random(self):
|
def shuffle_data_random(self):
|
||||||
if self.do_shuffle:
|
if self.do_shuffle:
|
||||||
|
random.seed(self.seed)
|
||||||
random.shuffle(self.data_lines)
|
random.shuffle(self.data_lines)
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
|
@ -213,16 +213,14 @@ class GridGenerator(nn.Layer):
|
||||||
|
|
||||||
def build_P_paddle(self, I_r_size):
|
def build_P_paddle(self, I_r_size):
|
||||||
I_r_height, I_r_width = I_r_size
|
I_r_height, I_r_width = I_r_size
|
||||||
I_r_grid_x = paddle.divide(
|
I_r_grid_x = (paddle.arange(
|
||||||
paddle.arange(
|
-I_r_width, I_r_width, 2, dtype='float64') + 1.0
|
||||||
-I_r_width, I_r_width, 2, dtype='float64') + 1.0,
|
) / paddle.to_tensor(np.array([I_r_width]))
|
||||||
paddle.to_tensor(
|
|
||||||
I_r_width, dtype='float64'))
|
I_r_grid_y = (paddle.arange(
|
||||||
I_r_grid_y = paddle.divide(
|
-I_r_height, I_r_height, 2, dtype='float64') + 1.0
|
||||||
paddle.arange(
|
) / paddle.to_tensor(np.array([I_r_height]))
|
||||||
-I_r_height, I_r_height, 2, dtype='float64') + 1.0,
|
|
||||||
paddle.to_tensor(
|
|
||||||
I_r_height, dtype='float64')) # self.I_r_height
|
|
||||||
# P: self.I_r_width x self.I_r_height x 2
|
# P: self.I_r_width x self.I_r_height x 2
|
||||||
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
|
P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
|
||||||
P = paddle.transpose(P, perm=[1, 0, 2])
|
P = paddle.transpose(P, perm=[1, 0, 2])
|
||||||
|
|
|
@ -109,7 +109,7 @@ class CTCLabelDecode(BaseRecLabelDecode):
|
||||||
|
|
||||||
preds_idx = preds.argmax(axis=2)
|
preds_idx = preds.argmax(axis=2)
|
||||||
preds_prob = preds.max(axis=2)
|
preds_prob = preds.max(axis=2)
|
||||||
text = self.decode(preds_idx, preds_prob)
|
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
|
||||||
if label is None:
|
if label is None:
|
||||||
return text
|
return text
|
||||||
label = self.decode(label)
|
label = self.decode(label)
|
||||||
|
|
|
@ -182,8 +182,8 @@ def train(config,
|
||||||
start_epoch = 1
|
start_epoch = 1
|
||||||
|
|
||||||
for epoch in range(start_epoch, epoch_num + 1):
|
for epoch in range(start_epoch, epoch_num + 1):
|
||||||
if epoch > 0:
|
train_dataloader = build_dataloader(
|
||||||
train_dataloader = build_dataloader(config, 'Train', device, logger)
|
config, 'Train', device, logger, seed=epoch)
|
||||||
train_batch_cost = 0.0
|
train_batch_cost = 0.0
|
||||||
train_reader_cost = 0.0
|
train_reader_cost = 0.0
|
||||||
batch_sum = 0
|
batch_sum = 0
|
||||||
|
|