From 5edb619cdd7405f1f6946547320f84f27f15a85e Mon Sep 17 00:00:00 2001 From: tink2123 Date: Wed, 26 Aug 2020 20:14:13 +0800 Subject: [PATCH] rename rec_resnet_fpn --- configs/rec/rec_r50fpn_vd_none_srn.yml | 2 +- ...{rec_resnet50_fpn.py => rec_resnet_fpn.py} | 137 +++++++++++++----- 2 files changed, 98 insertions(+), 41 deletions(-) rename ppocr/modeling/backbones/{rec_resnet50_fpn.py => rec_resnet_fpn.py} (59%) diff --git a/configs/rec/rec_r50fpn_vd_none_srn.yml b/configs/rec/rec_r50fpn_vd_none_srn.yml index 7a0f136c..30709e47 100755 --- a/configs/rec/rec_r50fpn_vd_none_srn.yml +++ b/configs/rec/rec_r50fpn_vd_none_srn.yml @@ -27,7 +27,7 @@ Architecture: function: ppocr.modeling.architectures.rec_model,RecModel Backbone: - function: ppocr.modeling.backbones.rec_resnet50_fpn,ResNet + function: ppocr.modeling.backbones.rec_resnet_fpn,ResNet layers: 50 Head: diff --git a/ppocr/modeling/backbones/rec_resnet50_fpn.py b/ppocr/modeling/backbones/rec_resnet_fpn.py similarity index 59% rename from ppocr/modeling/backbones/rec_resnet50_fpn.py rename to ppocr/modeling/backbones/rec_resnet_fpn.py index a0aef487..0a05b5de 100755 --- a/ppocr/modeling/backbones/rec_resnet50_fpn.py +++ b/ppocr/modeling/backbones/rec_resnet_fpn.py @@ -22,12 +22,12 @@ import paddle import paddle.fluid as fluid from paddle.fluid.param_attr import ParamAttr - -__all__ = ["ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"] +__all__ = [ + "ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152" +] Trainable = True -w_nolr = fluid.ParamAttr( - trainable = Trainable) +w_nolr = fluid.ParamAttr(trainable=Trainable) train_parameters = { "input_size": [3, 224, 224], "input_mean": [0.485, 0.456, 0.406], @@ -40,12 +40,12 @@ train_parameters = { } } + class ResNet(): def __init__(self, params): self.layers = params['layers'] self.params = train_parameters - def __call__(self, input): layers = self.layers supported_layers = [18, 34, 50, 101, 152] @@ -60,12 +60,17 @@ class ResNet(): depth = [3, 4, 23, 3] elif layers == 152: depth = [3, 8, 36, 3] - stride_list = [(2,2),(2,2),(1,1),(1,1)] + stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)] num_filters = [64, 128, 256, 512] conv = self.conv_bn_layer( - input=input, num_filters=64, filter_size=7, stride=2, act='relu', name="conv1") - F = [] + input=input, + num_filters=64, + filter_size=7, + stride=2, + act='relu', + name="conv1") + F = [] if layers >= 50: for block in range(len(depth)): for i in range(depth[block]): @@ -79,7 +84,8 @@ class ResNet(): conv = self.bottleneck_block( input=conv, num_filters=num_filters[block], - stride=stride_list[block] if i == 0 else 1, name=conv_name) + stride=stride_list[block] if i == 0 else 1, + name=conv_name) F.append(conv) else: for block in range(len(depth)): @@ -100,22 +106,45 @@ class ResNet(): F.append(conv) base = F[-1] - for i in [-2, -3]: + for i in [-2, -3]: b, c, w, h = F[i].shape - if (w,h) == base.shape[2:]: + if (w, h) == base.shape[2:]: base = base else: - base = fluid.layers.conv2d_transpose( input=base, num_filters=c,filter_size=4, stride=2, - padding=1,act=None, + base = fluid.layers.conv2d_transpose( + input=base, + num_filters=c, + filter_size=4, + stride=2, + padding=1, + act=None, param_attr=w_nolr, bias_attr=w_nolr) - base = fluid.layers.batch_norm(base, act = "relu", param_attr=w_nolr, bias_attr=w_nolr) + base = fluid.layers.batch_norm( + base, act="relu", param_attr=w_nolr, bias_attr=w_nolr) base = fluid.layers.concat([base, F[i]], axis=1) - base = fluid.layers.conv2d(base, num_filters=c, filter_size=1, param_attr=w_nolr, bias_attr=w_nolr) - base = fluid.layers.conv2d(base, num_filters=c, filter_size=3,padding = 1, param_attr=w_nolr, bias_attr=w_nolr) - base = fluid.layers.batch_norm(base, act = "relu", param_attr=w_nolr, bias_attr=w_nolr) + base = fluid.layers.conv2d( + base, + num_filters=c, + filter_size=1, + param_attr=w_nolr, + bias_attr=w_nolr) + base = fluid.layers.conv2d( + base, + num_filters=c, + filter_size=3, + padding=1, + param_attr=w_nolr, + bias_attr=w_nolr) + base = fluid.layers.batch_norm( + base, act="relu", param_attr=w_nolr, bias_attr=w_nolr) - base = fluid.layers.conv2d(base, num_filters=512, filter_size=1,bias_attr=w_nolr,param_attr=w_nolr) + base = fluid.layers.conv2d( + base, + num_filters=512, + filter_size=1, + bias_attr=w_nolr, + param_attr=w_nolr) return base @@ -130,13 +159,14 @@ class ResNet(): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, - filter_size= 2 if stride==(1,1) else filter_size, - dilation = 2 if stride==(1,1) else 1, + filter_size=2 if stride == (1, 1) else filter_size, + dilation=2 if stride == (1, 1) else 1, stride=stride, padding=(filter_size - 1) // 2, groups=groups, act=None, - param_attr=ParamAttr(name=name + "_weights",trainable = Trainable), + param_attr=ParamAttr( + name=name + "_weights", trainable=Trainable), bias_attr=False, name=name + '.conv2d.output.1') @@ -144,28 +174,35 @@ class ResNet(): bn_name = "bn_" + name else: bn_name = "bn" + name[3:] - return fluid.layers.batch_norm(input=conv, - act=act, - name=bn_name + '.output.1', - param_attr=ParamAttr(name=bn_name + '_scale',trainable = Trainable), - bias_attr=ParamAttr(bn_name + '_offset',trainable = Trainable), - moving_mean_name=bn_name + '_mean', - moving_variance_name=bn_name + '_variance', ) + return fluid.layers.batch_norm( + input=conv, + act=act, + name=bn_name + '.output.1', + param_attr=ParamAttr( + name=bn_name + '_scale', trainable=Trainable), + bias_attr=ParamAttr( + bn_name + '_offset', trainable=Trainable), + moving_mean_name=bn_name + '_mean', + moving_variance_name=bn_name + '_variance', ) def shortcut(self, input, ch_out, stride, is_first, name): ch_in = input.shape[1] if ch_in != ch_out or stride != 1 or is_first == True: - if stride == (1,1): + if stride == (1, 1): return self.conv_bn_layer(input, ch_out, 1, 1, name=name) - else: #stride == (2,2) + else: #stride == (2,2) return self.conv_bn_layer(input, ch_out, 1, stride, name=name) - + else: return input def bottleneck_block(self, input, num_filters, stride, name): conv0 = self.conv_bn_layer( - input=input, num_filters=num_filters, filter_size=1, act='relu', name=name + "_branch2a") + input=input, + num_filters=num_filters, + filter_size=1, + act='relu', + name=name + "_branch2a") conv1 = self.conv_bn_layer( input=conv0, num_filters=num_filters, @@ -174,16 +211,36 @@ class ResNet(): act='relu', name=name + "_branch2b") conv2 = self.conv_bn_layer( - input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, name=name + "_branch2c") + input=conv1, + num_filters=num_filters * 4, + filter_size=1, + act=None, + name=name + "_branch2c") - short = self.shortcut(input, num_filters * 4, stride, is_first=False, name=name + "_branch1") + short = self.shortcut( + input, + num_filters * 4, + stride, + is_first=False, + name=name + "_branch1") - return fluid.layers.elementwise_add(x=short, y=conv2, act='relu', name=name + ".add.output.5") + return fluid.layers.elementwise_add( + x=short, y=conv2, act='relu', name=name + ".add.output.5") def basic_block(self, input, num_filters, stride, is_first, name): - conv0 = self.conv_bn_layer(input=input, num_filters=num_filters, filter_size=3, act='relu', stride=stride, - name=name + "_branch2a") - conv1 = self.conv_bn_layer(input=conv0, num_filters=num_filters, filter_size=3, act=None, - name=name + "_branch2b") - short = self.shortcut(input, num_filters, stride, is_first, name=name + "_branch1") + conv0 = self.conv_bn_layer( + input=input, + num_filters=num_filters, + filter_size=3, + act='relu', + stride=stride, + name=name + "_branch2a") + conv1 = self.conv_bn_layer( + input=conv0, + num_filters=num_filters, + filter_size=3, + act=None, + name=name + "_branch2b") + short = self.shortcut( + input, num_filters, stride, is_first, name=name + "_branch1") return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')