test=documents_fix,test=release/2.3
This commit is contained in:
parent
a83f9aef70
commit
5fb116a0e6
|
@ -146,7 +146,7 @@ For a new language request, please refer to [Guideline for new language_requests
|
|||
|
||||
[1] PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module (as shown in the green box above). The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941).
|
||||
|
||||
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy; The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (arXiv link is coming soon).
|
||||
[2] On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detection model adopts CML(Collaborative Mutual Learning) knowledge distillation strategy and CopyPaste data expansion strategy. The recognition model adopts LCNet lightweight backbone network, U-DML knowledge distillation strategy and enhanced CTC loss function improvement (as shown in the red box above), which further improves the inference speed and prediction effect. For more details, please refer to the technical report of PP-OCRv2 (arXiv link is coming soon).
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,7 @@
|
|||
# 运行环境准备
|
||||
Windows和Mac用户推荐使用Anaconda搭建Python环境,Linux用户建议使用docker搭建PyThon环境。
|
||||
|
||||
如果对于Python环境熟悉的用户可以直接跳到第2步安装PaddlePaddle。
|
||||
|
||||
* [1. Python环境搭建](#1)
|
||||
+ [1.1 Windows](#1.1)
|
||||
|
@ -283,7 +286,7 @@ Linux用户可选择Anaconda或Docker两种方式运行。如果你熟悉Docker
|
|||
|
||||
#### 1.3.2 Docker环境配置
|
||||
|
||||
**注意:第一次使用这个镜像,会自动下载该镜像,请耐心等待。**
|
||||
**注意:第一次使用这个镜像,会自动下载该镜像,请耐心等待。您也可以访问[DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/)获取与您机器适配的镜像。**
|
||||
|
||||
```bash
|
||||
# 切换到工作目录下
|
||||
|
@ -297,8 +300,6 @@ sudo docker run --name ppocr -v $PWD:/paddle --network=host -it paddlepaddle/pad
|
|||
如果使用CUDA10,请运行以下命令创建容器,设置docker容器共享内存shm-size为64G,建议设置32G以上
|
||||
sudo nvidia-docker run --name ppocr -v $PWD:/paddle --shm-size=64G --network=host -it paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82 /bin/bash
|
||||
|
||||
您也可以访问[DockerHub](https://hub.docker.com/r/paddlepaddle/paddle/tags/)获取与您机器适配的镜像。
|
||||
|
||||
# ctrl+P+Q可退出docker 容器,重新进入docker 容器使用如下命令
|
||||
sudo docker container exec -it ppocr /bin/bash
|
||||
```
|
||||
|
|
|
@ -232,6 +232,7 @@ im_show.save('result.jpg')
|
|||
<img src="../imgs_results/whl/11_det_rec.jpg" width="800">
|
||||
</div>
|
||||
<a name="222"></a>
|
||||
|
||||
#### 2.2.2 版面分析
|
||||
|
||||
```python
|
||||
|
|
Loading…
Reference in New Issue