fix errors and add pretrain_model
This commit is contained in:
parent
f698142542
commit
6824db26e7
|
@ -31,7 +31,7 @@
|
|||
|- rgb/ total_text数据集的训练数据
|
||||
|- gt_0.png
|
||||
| ...
|
||||
|-poly/ total_text数据集的测试标注
|
||||
|- poly/ total_text数据集的测试标注
|
||||
|- gt_0.txt
|
||||
| ...
|
||||
```
|
||||
|
@ -52,19 +52,11 @@
|
|||
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures)中的模型更换backbone。
|
||||
```shell
|
||||
cd PaddleOCR/
|
||||
下载ResNet50_vd的预训练模型
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
|
||||
下载ResNet50_vd的动态图预训练模型
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
|
||||
|
||||
# 解压预训练模型文件,以ResNet50_vd为例
|
||||
tar -xf ./pretrain_models/ResNet50_vd_ssld_pretrained.tar ./pretrain_models/
|
||||
|
||||
# 注:正确解压backbone预训练权重文件后,文件夹下包含众多以网络层命名的权重文件,格式如下:
|
||||
./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
└─ conv_last_bn_mean
|
||||
└─ conv_last_bn_offset
|
||||
└─ conv_last_bn_scale
|
||||
└─ conv_last_bn_variance
|
||||
└─ ......
|
||||
./pretrain_models/
|
||||
└─ ResNet50_vd_ssld_pretrained.pdparams
|
||||
|
||||
```
|
||||
|
||||
|
@ -74,11 +66,9 @@ tar -xf ./pretrain_models/ResNet50_vd_ssld_pretrained.tar ./pretrain_models/
|
|||
|
||||
```shell
|
||||
# 单机单卡训练 e2e 模型
|
||||
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml \
|
||||
-o Global.pretrain_weights=./pretrain_models/ResNet50_vd_ssld_pretrained/ Global.load_static_weights=True
|
||||
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained Global.load_static_weights=False
|
||||
# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml \
|
||||
-o Global.pretrain_weights=./pretrain_models/ResNet50_vd_ssld_pretrained/ Global.load_static_weights=True
|
||||
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained Global.load_static_weights=False
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -369,9 +369,9 @@ Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
|
|||
<a name="PGNet端到端模型推理"></a>
|
||||
### 1. PGNet端到端模型推理
|
||||
#### (1). 四边形文本检测模型(ICDAR2015)
|
||||
首先将PGNet端到端训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
|
||||
首先将PGNet端到端训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)),可以使用如下命令进行转换:
|
||||
```
|
||||
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
|
||||
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/iter_epoch_450 Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
|
||||
```
|
||||
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`**,可以执行如下命令:
|
||||
```
|
||||
|
@ -382,15 +382,10 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
|
|||
![](../imgs_results/e2e_res_img_10_pgnet.jpg)
|
||||
|
||||
#### (2). 弯曲文本检测模型(Total-Text)
|
||||
首先将PGNet端到端训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
|
||||
```
|
||||
|
||||
和四边形文本检测模型共用一个推理模型
|
||||
**PGNet端到端模型推理,需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`,**可以执行如下命令:
|
||||
```
|
||||
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
|
||||
python3.7 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
|
||||
```
|
||||
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:
|
||||
|
||||
|
|
|
@ -27,7 +27,7 @@ class PGProcessTrain(object):
|
|||
tcl_len,
|
||||
batch_size=14,
|
||||
min_crop_size=24,
|
||||
min_text_size=10,
|
||||
min_text_size=4,
|
||||
max_text_size=512,
|
||||
**kwargs):
|
||||
self.tcl_len = tcl_len
|
||||
|
@ -197,7 +197,6 @@ class PGProcessTrain(object):
|
|||
for selected_poly in selected_polys:
|
||||
txts_tmp.append(txts[selected_poly])
|
||||
txts = txts_tmp
|
||||
# print(1111)
|
||||
return im[ymin: ymax + 1, xmin: xmax + 1, :], \
|
||||
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
|
||||
else:
|
||||
|
@ -309,7 +308,6 @@ class PGProcessTrain(object):
|
|||
cv2.fillPoly(direction_map,
|
||||
quad.round().astype(np.int32)[np.newaxis, :, :],
|
||||
direction_label)
|
||||
cv2.imwrite("output/{}.png".format(k), direction_map * 255.0)
|
||||
k += 1
|
||||
return direction_map
|
||||
|
||||
|
|
|
@ -67,10 +67,7 @@ class PGDataSet(Dataset):
|
|||
np.array(
|
||||
list(poly), dtype=np.float32).reshape(-1, 2))
|
||||
txts.append(txt)
|
||||
if txt == '###':
|
||||
txt_tags.append(True)
|
||||
else:
|
||||
txt_tags.append(False)
|
||||
txt_tags.append(txt == '###')
|
||||
|
||||
return np.array(list(map(np.array, text_polys))), \
|
||||
np.array(txt_tags, dtype=np.bool), txts
|
||||
|
@ -84,8 +81,8 @@ class PGDataSet(Dataset):
|
|||
for ext in [
|
||||
'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'JPG'
|
||||
]:
|
||||
if os.path.exists(os.path.join(img_dir, info_list[0] + ext)):
|
||||
img_path = os.path.join(img_dir, info_list[0] + ext)
|
||||
if os.path.exists(os.path.join(img_dir, info_list[0] + "." + ext)):
|
||||
img_path = os.path.join(img_dir, info_list[0] + "." + ext)
|
||||
break
|
||||
|
||||
if img_path == '':
|
||||
|
|
|
@ -20,7 +20,7 @@ from paddle import nn
|
|||
import paddle
|
||||
|
||||
from .det_basic_loss import DiceLoss
|
||||
from ppocr.utils.e2e_utils.extract_batchsize import *
|
||||
from ppocr.utils.e2e_utils.extract_batchsize import pre_process
|
||||
|
||||
|
||||
class PGLoss(nn.Layer):
|
||||
|
|
|
@ -18,8 +18,8 @@ from __future__ import print_function
|
|||
|
||||
__all__ = ['E2EMetric']
|
||||
|
||||
from ppocr.utils.e2e_metric.Deteval import *
|
||||
from ppocr.utils.e2e_utils.extract_textpoint import *
|
||||
from ppocr.utils.e2e_metric.Deteval import get_socre, combine_results
|
||||
from ppocr.utils.e2e_utils.extract_textpoint import get_dict
|
||||
|
||||
|
||||
class E2EMetric(object):
|
||||
|
|
|
@ -7,4 +7,5 @@ opencv-python==4.2.0.32
|
|||
tqdm
|
||||
numpy
|
||||
visualdl
|
||||
python-Levenshtein
|
||||
python-Levenshtein
|
||||
opencv-contrib-python
|
|
@ -34,7 +34,7 @@ from ppocr.postprocess import build_post_process
|
|||
logger = get_logger()
|
||||
|
||||
|
||||
class TextE2e(object):
|
||||
class TextE2E(object):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
self.e2e_algorithm = args.e2e_algorithm
|
||||
|
@ -130,7 +130,7 @@ class TextE2e(object):
|
|||
if __name__ == "__main__":
|
||||
args = utility.parse_args()
|
||||
image_file_list = get_image_file_list(args.image_dir)
|
||||
text_detector = TextE2e(args)
|
||||
text_detector = TextE2E(args)
|
||||
count = 0
|
||||
total_time = 0
|
||||
draw_img_save = "./inference_results"
|
||||
|
@ -151,7 +151,7 @@ if __name__ == "__main__":
|
|||
src_im = utility.draw_e2e_res(points, strs, image_file)
|
||||
img_name_pure = os.path.split(image_file)[-1]
|
||||
img_path = os.path.join(draw_img_save,
|
||||
"e2e_res_{}".format(img_name_pure))
|
||||
"e2e_res_{}_pgnet".format(img_name_pure))
|
||||
cv2.imwrite(img_path, src_im)
|
||||
logger.info("The visualized image saved in {}".format(img_path))
|
||||
if count > 1:
|
||||
|
|
Loading…
Reference in New Issue