fix errors and add pretrain_model

This commit is contained in:
Jethong 2021-04-07 12:26:05 +08:00
parent f698142542
commit 6824db26e7
8 changed files with 23 additions and 42 deletions

View File

@ -31,7 +31,7 @@
|- rgb/ total_text数据集的训练数据
|- gt_0.png
| ...
|-poly/ total_text数据集的测试标注
|- poly/ total_text数据集的测试标注
|- gt_0.txt
| ...
```
@ -52,19 +52,11 @@
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures)中的模型更换backbone。
```shell
cd PaddleOCR/
下载ResNet50_vd的预训练模型
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
下载ResNet50_vd的动态图预训练模型
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
# 解压预训练模型文件以ResNet50_vd为例
tar -xf ./pretrain_models/ResNet50_vd_ssld_pretrained.tar ./pretrain_models/
# 注正确解压backbone预训练权重文件后文件夹下包含众多以网络层命名的权重文件格式如下
./pretrain_models/ResNet50_vd_ssld_pretrained/
└─ conv_last_bn_mean
└─ conv_last_bn_offset
└─ conv_last_bn_scale
└─ conv_last_bn_variance
└─ ......
./pretrain_models/
└─ ResNet50_vd_ssld_pretrained.pdparams
```
@ -74,11 +66,9 @@ tar -xf ./pretrain_models/ResNet50_vd_ssld_pretrained.tar ./pretrain_models/
```shell
# 单机单卡训练 e2e 模型
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml \
-o Global.pretrain_weights=./pretrain_models/ResNet50_vd_ssld_pretrained/ Global.load_static_weights=True
python3 tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained Global.load_static_weights=False
# 单机多卡训练,通过 --gpus 参数设置使用的GPU ID
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml \
-o Global.pretrain_weights=./pretrain_models/ResNet50_vd_ssld_pretrained/ Global.load_static_weights=True
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./pretrain_models/ResNet50_vd_ssld_pretrained Global.load_static_weights=False
```

View File

@ -369,9 +369,9 @@ Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
<a name="PGNet端到端模型推理"></a>
### 1. PGNet端到端模型推理
#### (1). 四边形文本检测模型ICDAR2015
首先将PGNet端到端训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
首先将PGNet端到端训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/pgnet/en_server_pgnetA.tar)),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./en_server_pgnetA/iter_epoch_450 Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
```
**PGNet端到端模型推理需要设置参数`--e2e_algorithm="PGNet"`**,可以执行如下命令:
```
@ -382,15 +382,10 @@ python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/im
![](../imgs_results/e2e_res_img_10_pgnet.jpg)
#### (2). 弯曲文本检测模型Total-Text
首先将PGNet端到端训练过程中保存的模型转换成inference model。以基于Resnet50_vd骨干网络在Total-Text英文数据集训练的模型为例[模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
```
python3 tools/export_model.py -c configs/e2e/e2e_r50_vd_pg.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/e2e
```
和四边形文本检测模型共用一个推理模型
**PGNet端到端模型推理需要设置参数`--e2e_algorithm="PGNet"`,同时,还需要增加参数`--e2e_pgnet_polygon=True`**可以执行如下命令:
```
python3 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
python3.7 tools/infer/predict_e2e.py --e2e_algorithm="PGNet" --image_dir="./doc/imgs_en/img623.jpg" --e2e_model_dir="./inference/e2e/" --e2e_pgnet_polygon=True
```
可视化文本端到端结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'e2e_res'。结果示例如下:

View File

@ -27,7 +27,7 @@ class PGProcessTrain(object):
tcl_len,
batch_size=14,
min_crop_size=24,
min_text_size=10,
min_text_size=4,
max_text_size=512,
**kwargs):
self.tcl_len = tcl_len
@ -197,7 +197,6 @@ class PGProcessTrain(object):
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
# print(1111)
return im[ymin: ymax + 1, xmin: xmax + 1, :], \
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
else:
@ -309,7 +308,6 @@ class PGProcessTrain(object):
cv2.fillPoly(direction_map,
quad.round().astype(np.int32)[np.newaxis, :, :],
direction_label)
cv2.imwrite("output/{}.png".format(k), direction_map * 255.0)
k += 1
return direction_map

View File

@ -67,10 +67,7 @@ class PGDataSet(Dataset):
np.array(
list(poly), dtype=np.float32).reshape(-1, 2))
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
txt_tags.append(txt == '###')
return np.array(list(map(np.array, text_polys))), \
np.array(txt_tags, dtype=np.bool), txts
@ -84,8 +81,8 @@ class PGDataSet(Dataset):
for ext in [
'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'JPG'
]:
if os.path.exists(os.path.join(img_dir, info_list[0] + ext)):
img_path = os.path.join(img_dir, info_list[0] + ext)
if os.path.exists(os.path.join(img_dir, info_list[0] + "." + ext)):
img_path = os.path.join(img_dir, info_list[0] + "." + ext)
break
if img_path == '':

View File

@ -20,7 +20,7 @@ from paddle import nn
import paddle
from .det_basic_loss import DiceLoss
from ppocr.utils.e2e_utils.extract_batchsize import *
from ppocr.utils.e2e_utils.extract_batchsize import pre_process
class PGLoss(nn.Layer):

View File

@ -18,8 +18,8 @@ from __future__ import print_function
__all__ = ['E2EMetric']
from ppocr.utils.e2e_metric.Deteval import *
from ppocr.utils.e2e_utils.extract_textpoint import *
from ppocr.utils.e2e_metric.Deteval import get_socre, combine_results
from ppocr.utils.e2e_utils.extract_textpoint import get_dict
class E2EMetric(object):

View File

@ -7,4 +7,5 @@ opencv-python==4.2.0.32
tqdm
numpy
visualdl
python-Levenshtein
python-Levenshtein
opencv-contrib-python

View File

@ -34,7 +34,7 @@ from ppocr.postprocess import build_post_process
logger = get_logger()
class TextE2e(object):
class TextE2E(object):
def __init__(self, args):
self.args = args
self.e2e_algorithm = args.e2e_algorithm
@ -130,7 +130,7 @@ class TextE2e(object):
if __name__ == "__main__":
args = utility.parse_args()
image_file_list = get_image_file_list(args.image_dir)
text_detector = TextE2e(args)
text_detector = TextE2E(args)
count = 0
total_time = 0
draw_img_save = "./inference_results"
@ -151,7 +151,7 @@ if __name__ == "__main__":
src_im = utility.draw_e2e_res(points, strs, image_file)
img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save,
"e2e_res_{}".format(img_name_pure))
"e2e_res_{}_pgnet".format(img_name_pure))
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
if count > 1: