switch learning_rate and lr
This commit is contained in:
parent
d092a5a22f
commit
695c4db7ea
|
@ -17,7 +17,7 @@ from __future__ import division
|
|||
from __future__ import print_function
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from paddle.optimizer import lr as lr_scheduler
|
||||
from paddle.optimizer import lr
|
||||
|
||||
|
||||
class Linear(object):
|
||||
|
@ -32,7 +32,7 @@ class Linear(object):
|
|||
"""
|
||||
|
||||
def __init__(self,
|
||||
lr,
|
||||
learning_rate,
|
||||
epochs,
|
||||
step_each_epoch,
|
||||
end_lr=0.0,
|
||||
|
@ -41,7 +41,7 @@ class Linear(object):
|
|||
last_epoch=-1,
|
||||
**kwargs):
|
||||
super(Linear, self).__init__()
|
||||
self.lr = lr
|
||||
self.learning_rate = learning_rate
|
||||
self.epochs = epochs * step_each_epoch
|
||||
self.end_lr = end_lr
|
||||
self.power = power
|
||||
|
@ -49,18 +49,18 @@ class Linear(object):
|
|||
self.warmup_epoch = warmup_epoch * step_each_epoch
|
||||
|
||||
def __call__(self):
|
||||
learning_rate = lr_scheduler.PolynomialLR(
|
||||
learning_rate=self.lr,
|
||||
learning_rate = lr.PolynomialDecay(
|
||||
learning_rate=self.learning_rate,
|
||||
decay_steps=self.epochs,
|
||||
end_lr=self.end_lr,
|
||||
power=self.power,
|
||||
last_epoch=self.last_epoch)
|
||||
if self.warmup_epoch > 0:
|
||||
learning_rate = lr_scheduler.LinearLrWarmup(
|
||||
learning_rate = lr.LinearWarmup(
|
||||
learning_rate=learning_rate,
|
||||
warmup_steps=self.warmup_epoch,
|
||||
start_lr=0.0,
|
||||
end_lr=self.lr,
|
||||
end_lr=self.learning_rate,
|
||||
last_epoch=self.last_epoch)
|
||||
return learning_rate
|
||||
|
||||
|
@ -77,27 +77,29 @@ class Cosine(object):
|
|||
"""
|
||||
|
||||
def __init__(self,
|
||||
lr,
|
||||
learning_rate,
|
||||
step_each_epoch,
|
||||
epochs,
|
||||
warmup_epoch=0,
|
||||
last_epoch=-1,
|
||||
**kwargs):
|
||||
super(Cosine, self).__init__()
|
||||
self.lr = lr
|
||||
self.learning_rate = learning_rate
|
||||
self.T_max = step_each_epoch * epochs
|
||||
self.last_epoch = last_epoch
|
||||
self.warmup_epoch = warmup_epoch * step_each_epoch
|
||||
|
||||
def __call__(self):
|
||||
learning_rate = lr_scheduler.CosineAnnealingLR(
|
||||
learning_rate=self.lr, T_max=self.T_max, last_epoch=self.last_epoch)
|
||||
learning_rate = lr.CosineAnnealingDecay(
|
||||
learning_rate=self.learning_rate,
|
||||
T_max=self.T_max,
|
||||
last_epoch=self.last_epoch)
|
||||
if self.warmup_epoch > 0:
|
||||
learning_rate = lr_scheduler.LinearLrWarmup(
|
||||
learning_rate = lr.LinearWarmup(
|
||||
learning_rate=learning_rate,
|
||||
warmup_steps=self.warmup_epoch,
|
||||
start_lr=0.0,
|
||||
end_lr=self.lr,
|
||||
end_lr=self.learning_rate,
|
||||
last_epoch=self.last_epoch)
|
||||
return learning_rate
|
||||
|
||||
|
@ -115,7 +117,7 @@ class Step(object):
|
|||
"""
|
||||
|
||||
def __init__(self,
|
||||
lr,
|
||||
learning_rate,
|
||||
step_size,
|
||||
step_each_epoch,
|
||||
gamma,
|
||||
|
@ -124,23 +126,23 @@ class Step(object):
|
|||
**kwargs):
|
||||
super(Step, self).__init__()
|
||||
self.step_size = step_each_epoch * step_size
|
||||
self.lr = lr
|
||||
self.learning_rate = learning_rate
|
||||
self.gamma = gamma
|
||||
self.last_epoch = last_epoch
|
||||
self.warmup_epoch = warmup_epoch * step_each_epoch
|
||||
|
||||
def __call__(self):
|
||||
learning_rate = lr_scheduler.StepLR(
|
||||
learning_rate=self.lr,
|
||||
learning_rate = lr.StepDecay(
|
||||
learning_rate=self.learning_rate,
|
||||
step_size=self.step_size,
|
||||
gamma=self.gamma,
|
||||
last_epoch=self.last_epoch)
|
||||
if self.warmup_epoch > 0:
|
||||
learning_rate = lr_scheduler.LinearLrWarmup(
|
||||
learning_rate = lr.LinearWarmup(
|
||||
learning_rate=learning_rate,
|
||||
warmup_steps=self.warmup_epoch,
|
||||
start_lr=0.0,
|
||||
end_lr=self.lr,
|
||||
end_lr=self.learning_rate,
|
||||
last_epoch=self.last_epoch)
|
||||
return learning_rate
|
||||
|
||||
|
@ -169,12 +171,12 @@ class Piecewise(object):
|
|||
self.warmup_epoch = warmup_epoch * step_each_epoch
|
||||
|
||||
def __call__(self):
|
||||
learning_rate = lr_scheduler.PiecewiseLR(
|
||||
learning_rate = lr.PiecewiseDecay(
|
||||
boundaries=self.boundaries,
|
||||
values=self.values,
|
||||
last_epoch=self.last_epoch)
|
||||
if self.warmup_epoch > 0:
|
||||
learning_rate = lr_scheduler.LinearLrWarmup(
|
||||
learning_rate = lr.LinearWarmup(
|
||||
learning_rate=learning_rate,
|
||||
warmup_steps=self.warmup_epoch,
|
||||
start_lr=0.0,
|
||||
|
|
Loading…
Reference in New Issue