From 695c4db7ea237af68721bc9544c0ef7696bad422 Mon Sep 17 00:00:00 2001 From: WenmuZhou Date: Thu, 5 Nov 2020 20:49:44 +0800 Subject: [PATCH] switch learning_rate and lr --- ppocr/optimizer/learning_rate.py | 44 +++++++++++++++++--------------- 1 file changed, 23 insertions(+), 21 deletions(-) diff --git a/ppocr/optimizer/learning_rate.py b/ppocr/optimizer/learning_rate.py index 518e0eef..8f303e83 100644 --- a/ppocr/optimizer/learning_rate.py +++ b/ppocr/optimizer/learning_rate.py @@ -17,7 +17,7 @@ from __future__ import division from __future__ import print_function from __future__ import unicode_literals -from paddle.optimizer import lr as lr_scheduler +from paddle.optimizer import lr class Linear(object): @@ -32,7 +32,7 @@ class Linear(object): """ def __init__(self, - lr, + learning_rate, epochs, step_each_epoch, end_lr=0.0, @@ -41,7 +41,7 @@ class Linear(object): last_epoch=-1, **kwargs): super(Linear, self).__init__() - self.lr = lr + self.learning_rate = learning_rate self.epochs = epochs * step_each_epoch self.end_lr = end_lr self.power = power @@ -49,18 +49,18 @@ class Linear(object): self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): - learning_rate = lr_scheduler.PolynomialLR( - learning_rate=self.lr, + learning_rate = lr.PolynomialDecay( + learning_rate=self.learning_rate, decay_steps=self.epochs, end_lr=self.end_lr, power=self.power, last_epoch=self.last_epoch) if self.warmup_epoch > 0: - learning_rate = lr_scheduler.LinearLrWarmup( + learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, - end_lr=self.lr, + end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate @@ -77,27 +77,29 @@ class Cosine(object): """ def __init__(self, - lr, + learning_rate, step_each_epoch, epochs, warmup_epoch=0, last_epoch=-1, **kwargs): super(Cosine, self).__init__() - self.lr = lr + self.learning_rate = learning_rate self.T_max = step_each_epoch * epochs self.last_epoch = last_epoch self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): - learning_rate = lr_scheduler.CosineAnnealingLR( - learning_rate=self.lr, T_max=self.T_max, last_epoch=self.last_epoch) + learning_rate = lr.CosineAnnealingDecay( + learning_rate=self.learning_rate, + T_max=self.T_max, + last_epoch=self.last_epoch) if self.warmup_epoch > 0: - learning_rate = lr_scheduler.LinearLrWarmup( + learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, - end_lr=self.lr, + end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate @@ -115,7 +117,7 @@ class Step(object): """ def __init__(self, - lr, + learning_rate, step_size, step_each_epoch, gamma, @@ -124,23 +126,23 @@ class Step(object): **kwargs): super(Step, self).__init__() self.step_size = step_each_epoch * step_size - self.lr = lr + self.learning_rate = learning_rate self.gamma = gamma self.last_epoch = last_epoch self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): - learning_rate = lr_scheduler.StepLR( - learning_rate=self.lr, + learning_rate = lr.StepDecay( + learning_rate=self.learning_rate, step_size=self.step_size, gamma=self.gamma, last_epoch=self.last_epoch) if self.warmup_epoch > 0: - learning_rate = lr_scheduler.LinearLrWarmup( + learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0, - end_lr=self.lr, + end_lr=self.learning_rate, last_epoch=self.last_epoch) return learning_rate @@ -169,12 +171,12 @@ class Piecewise(object): self.warmup_epoch = warmup_epoch * step_each_epoch def __call__(self): - learning_rate = lr_scheduler.PiecewiseLR( + learning_rate = lr.PiecewiseDecay( boundaries=self.boundaries, values=self.values, last_epoch=self.last_epoch) if self.warmup_epoch > 0: - learning_rate = lr_scheduler.LinearLrWarmup( + learning_rate = lr.LinearWarmup( learning_rate=learning_rate, warmup_steps=self.warmup_epoch, start_lr=0.0,