Merge pull request #4155 from LDOUBLEV/add_det_benchmark
add det benchmark
This commit is contained in:
commit
717dd6bf2f
|
@ -0,0 +1,54 @@
|
|||
#!/usr/bin/env bash
|
||||
set -xe
|
||||
# 运行示例:CUDA_VISIBLE_DEVICES=0 bash run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 500 ${model_mode}
|
||||
# 参数说明
|
||||
function _set_params(){
|
||||
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
||||
batch_size=${2:-"64"}
|
||||
fp_item=${3:-"fp32"} # fp32|fp16
|
||||
max_iter=${4:-"500"} # 可选,如果需要修改代码提前中断
|
||||
model_name=${5:-"model_name"}
|
||||
run_log_path=${TRAIN_LOG_DIR:-$(pwd)} # TRAIN_LOG_DIR 后续QA设置该参数
|
||||
|
||||
# 以下不用修改
|
||||
device=${CUDA_VISIBLE_DEVICES//,/ }
|
||||
arr=(${device})
|
||||
num_gpu_devices=${#arr[*]}
|
||||
log_file=${run_log_path}/${model_name}_${run_mode}_bs${batch_size}_${fp_item}_${num_gpu_devices}
|
||||
}
|
||||
function _train(){
|
||||
echo "Train on ${num_gpu_devices} GPUs"
|
||||
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
||||
|
||||
train_cmd="-c configs/det/${model_name}.yml
|
||||
-o Train.loader.batch_size_per_card=${batch_size}
|
||||
-o Global.epoch_num=${max_iter} "
|
||||
case ${run_mode} in
|
||||
sp)
|
||||
train_cmd="python3.7 tools/train.py "${train_cmd}""
|
||||
;;
|
||||
mp)
|
||||
train_cmd="python3.7 -m paddle.distributed.launch --log_dir=./mylog --gpus=$CUDA_VISIBLE_DEVICES tools/train.py ${train_cmd}"
|
||||
;;
|
||||
*) echo "choose run_mode(sp or mp)"; exit 1;
|
||||
esac
|
||||
# 以下不用修改
|
||||
timeout 15m ${train_cmd} > ${log_file} 2>&1
|
||||
if [ $? -ne 0 ];then
|
||||
echo -e "${model_name}, FAIL"
|
||||
export job_fail_flag=1
|
||||
else
|
||||
echo -e "${model_name}, SUCCESS"
|
||||
export job_fail_flag=0
|
||||
fi
|
||||
kill -9 `ps -ef|grep 'python3.7'|awk '{print $2}'`
|
||||
|
||||
if [ $run_mode = "mp" -a -d mylog ]; then
|
||||
rm ${log_file}
|
||||
cp mylog/workerlog.0 ${log_file}
|
||||
fi
|
||||
}
|
||||
|
||||
_set_params $@
|
||||
_train
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
|
||||
# 执行目录:需说明
|
||||
cd PaddleOCR
|
||||
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
|
||||
python3.7 -m pip install -r requirements.txt
|
||||
# 2 拷贝该模型需要数据、预训练模型
|
||||
wget -p ./tain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../
|
||||
wget -p ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
|
||||
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
|
||||
|
||||
model_mode_list=(det_mv3_db det_r50_vd_east)
|
||||
fp_item_list=(fp32)
|
||||
bs_list=(256 128)
|
||||
for model_mode in ${model_mode_list[@]}; do
|
||||
for fp_item in ${fp_item_list[@]}; do
|
||||
for bs_item in ${bs_list[@]}; do
|
||||
echo "index is speed, 1gpus, begin, ${model_name}"
|
||||
run_mode=sp
|
||||
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
|
||||
sleep 60
|
||||
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
|
||||
run_mode=mp
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
|
||||
sleep 60
|
||||
done
|
||||
done
|
||||
done
|
||||
|
||||
|
|
@ -8,7 +8,7 @@ Global:
|
|||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
|
|
Loading…
Reference in New Issue