diff --git a/README_ch.md b/README_ch.md index b1f07e29..588af59c 100644 --- a/README_ch.md +++ b/README_ch.md @@ -54,11 +54,10 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 | 模型简介 | 模型名称 |推荐场景 | 检测模型 | 方向分类器 | 识别模型 | | ------------ | --------------- | ----------------|---- | ---------- | -------- | -| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v1.1_xx |移动端&服务器端|[推理模型](link) / [预训练模型](link)|[推理模型](link) / [预训练模型](link) |[推理模型](link) / [预训练模型](link) | -| 中英文通用OCR模型(155.1M) |ch_ppocr_server_v1.1_xx|服务器端 |[推理模型](link) / [预训练模型](link) |[推理模型](link) / [预训练模型](link) |[推理模型](link) / [预训练模型](link) | -| 中英文超轻量压缩OCR模型(3.5M) | ch_ppocr_mobile_slim_v1.1_xx| 移动端 |[推理模型](link) / [slim模型](link) |[推理模型](link) / [slim模型](link)| [推理模型](link) / [slim模型](link)| +| 中英文超轻量OCR模型(8.1M) | ch_ppocr_mobile_v2.0_xx |移动端&服务器端|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) | +| 中英文通用OCR模型(143M) |ch_ppocr_server_v2.0_xx|服务器端 |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) | -更多模型下载(包括多语言),可以参考[PP-OCR v1.1 系列模型下载](./doc/doc_ch/models_list.md) +更多模型下载(包括多语言),可以参考[PP-OCR v2.0 系列模型下载](./doc/doc_ch/models_list.md) ## 文档教程 - [快速安装](./doc/doc_ch/installation.md) diff --git a/README_en.md b/README_en.md index d74c97ae..9e839c44 100644 --- a/README_en.md +++ b/README_en.md @@ -62,15 +62,11 @@ Mobile DEMO experience (based on EasyEdge and Paddle-Lite, supports iOS and Andr | Model introduction | Model name | Recommended scene | Detection model | Direction classifier | Recognition model | | ------------------------------------------------------------ | ---------------------------- | ----------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | -| Chinese and English ultra-lightweight OCR model (8.1M) | ch_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](link) / [pre-trained model](link) | [inference model](link) / [pre-trained model](link) | [inference model](link) / [pre-trained model](link) | -| Chinese and English general OCR model (155.1M) | ch_ppocr_server_v1.1_xx | Server | [inference model](link) / [pre-trained model](link) | [inference model](link) / [pre-trained model](link) | [inference model](link) / [pre-trained model](link) | -| Chinese and English ultra-lightweight compressed OCR model (3.5M) | ch_ppocr_mobile_slim_v1.1_xx | Mobile | [inference model](link) / [slim model](link) | [inference model](link) / [slim model](link) | [inference model](link) / [slim model](link) | -| French ultra-lightweight OCR model (4.6M) | french_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](link) / [pre-trained model](link) | - | [inference model](link) / [pre-trained model](link) | -| German ultra-lightweight OCR model (4.6M) | german_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](link) / [pre-trained model](link) | - |[inference model](link) / [pre-trained model](link) | -| Korean ultra-lightweight OCR model (5.9M) | korean_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](link) / [pre-trained model](link) | - |[inference model](link) / [pre-trained model](link)| -| Japan ultra-lightweight OCR model (6.2M) | japan_ppocr_mobile_v1.1_xx | Mobile & server | [inference model](link) / [pre-trained model](link) | - |[inference model](link) / [pre-trained model](link) | +| Chinese and English ultra-lightweight OCR model (8.1M) | ch_ppocr_mobile_v2.0_xx | Mobile & server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) | +| Chinese and English general OCR model (143M) | ch_ppocr_server_v2.0_xx | Server |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_traingit.tar) |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) | -For more model downloads (including multiple languages), please refer to [PP-OCR v1.1 series model downloads](./doc/doc_en/models_list_en.md). + +For more model downloads (including multiple languages), please refer to [PP-OCR v2.0 series model downloads](./doc/doc_en/models_list_en.md). For a new language request, please refer to [Guideline for new language_requests](#language_requests). diff --git a/configs/rec/rec_icdar15_train.yml b/configs/rec/rec_icdar15_train.yml new file mode 100644 index 00000000..7efbd5cf --- /dev/null +++ b/configs/rec/rec_icdar15_train.yml @@ -0,0 +1,97 @@ +Global: + use_gpu: true + epoch_num: 72 + log_smooth_window: 20 + print_batch_step: 10 + save_model_dir: ./output/rec/ic15/ + save_epoch_step: 3 + # evaluation is run every 2000 iterations + eval_batch_step: [0, 2000] + # if pretrained_model is saved in static mode, load_static_weights must set to True + cal_metric_during_train: True + pretrained_model: + checkpoints: + save_inference_dir: + use_visualdl: False + infer_img: doc/imgs_words_en/word_10.png + # for data or label process + character_dict_path: ppocr/utils/ic15_dict.txt + character_type: ch + max_text_length: 25 + infer_mode: False + use_space_char: False + +Optimizer: + name: Adam + beta1: 0.9 + beta2: 0.999 + lr: + learning_rate: 0.0005 + regularizer: + name: 'L2' + factor: 0 + +Architecture: + model_type: rec + algorithm: CRNN + Transform: + Backbone: + name: ResNet + layers: 34 + Neck: + name: SequenceEncoder + encoder_type: rnn + hidden_size: 256 + Head: + name: CTCHead + fc_decay: 0 + +Loss: + name: CTCLoss + +PostProcess: + name: CTCLabelDecode + +Metric: + name: RecMetric + main_indicator: acc + +Train: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ + label_file_list: ["./train_data/train_list.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - CTCLabelEncode: # Class handling label + - RecResizeImg: + image_shape: [3, 32, 100] + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: True + batch_size_per_card: 256 + drop_last: True + num_workers: 8 + +Eval: + dataset: + name: SimpleDataSet + data_dir: ./train_data/ + label_file_list: ["./train_data/train_list.txt"] + transforms: + - DecodeImage: # load image + img_mode: BGR + channel_first: False + - CTCLabelEncode: # Class handling label + - RecResizeImg: + image_shape: [3, 32, 100] + - KeepKeys: + keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order + loader: + shuffle: False + drop_last: False + batch_size_per_card: 256 + num_workers: 4 diff --git a/doc/doc_ch/recognition.md b/doc/doc_ch/recognition.md index 4097ec92..87d60c55 100644 --- a/doc/doc_ch/recognition.md +++ b/doc/doc_ch/recognition.md @@ -37,8 +37,6 @@ ln -sf /train_data/dataset 若您本地没有数据集,可以在官网下载 [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads) 数据,用于快速验证。也可以参考[DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here),下载 benchmark 所需的lmdb格式数据集。 -如果希望复现SRN的论文指标,需要下载离线[增广数据](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA),提取码: y3ry。增广数据是由MJSynth和SynthText做旋转和扰动得到的。数据下载完成后请解压到 {your_path}/PaddleOCR/train_data/data_lmdb_release/training/ 路径下。 - * 使用自己数据集 @@ -65,7 +63,7 @@ wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_t wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt ``` -PaddleOCR 也提供了数据格式转换脚本,可以将官网 label 转换支持的数据格式。 数据转换工具在 `train_data/gen_label.py`, 这里以训练集为例: +PaddleOCR 也提供了数据格式转换脚本,可以将官网 label 转换支持的数据格式。 数据转换工具在 `ppocr/utils/gen_label.py`, 这里以训练集为例: ``` # 将官网下载的标签文件转换为 rec_gt_label.txt @@ -116,9 +114,9 @@ n word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,“and” 将被映射成 [2 5 1] -`ppocr/utils/ppocr_keys_v1.txt` 是一个包含6623个字符的中文字典, +`ppocr/utils/ppocr_keys_v1.txt` 是一个包含6623个字符的中文字典 -`ppocr/utils/ic15_dict.txt` 是一个包含36个字符的英文字典, +`ppocr/utils/ic15_dict.txt` 是一个包含36个字符的英文字典 `ppocr/utils/dict/french_dict.txt` 是一个包含118个字符的法文字典 @@ -128,6 +126,8 @@ word_dict.txt 每行有一个单字,将字符与数字索引映射在一起, `ppocr/utils/dict/german_dict.txt` 是一个包含131个字符的德文字典 +`ppocr/utils/dict/en_dict.txt` 是一个包含63个字符的英文字典 + 您可以按需使用。 @@ -155,10 +155,10 @@ PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以 CRNN ``` cd PaddleOCR/ # 下载MobileNetV3的预训练模型 -wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar +wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar # 解压模型参数 cd pretrain_models -tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar +tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar ``` 开始训练: @@ -204,9 +204,7 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/rec/rec_icdar15_t | rec_mv3_tps_bilstm_attn.yml | RARE | Mobilenet_v3 large 0.5 | tps | BiLSTM | attention | | rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc | | rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc | -| rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention | | rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc | -| rec_r50fpn_vd_none_srn.yml | SRN | Resnet50_fpn_vd | None | rnn | srn | 训练中文数据,推荐使用[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml),如您希望尝试其他算法在中文数据集上的效果,请参考下列说明修改配置文件: diff --git a/doc/doc_en/recognition_en.md b/doc/doc_en/recognition_en.md index 7f5e436e..1539b288 100644 --- a/doc/doc_en/recognition_en.md +++ b/doc/doc_en/recognition_en.md @@ -120,6 +120,9 @@ In `word_dict.txt`, there is a single word in each line, which maps characters a `ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters +`ppocr/utils/dict/en_dict.txt` is a English dictionary with 63 characters + + You can use it on demand. The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**, @@ -149,10 +152,10 @@ First download the pretrain model, you can download the trained model to finetun ``` cd PaddleOCR/ # Download the pre-trained model of MobileNetV3 -wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar +wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar # Decompress model parameters cd pretrain_models -tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar +tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar ``` Start training: @@ -194,7 +197,6 @@ If the evaluation set is large, the test will be time-consuming. It is recommend | rec_mv3_tps_bilstm_attn.yml | RARE | Mobilenet_v3 large 0.5 | tps | BiLSTM | attention | | rec_r34_vd_none_bilstm_ctc.yml | CRNN | Resnet34_vd | None | BiLSTM | ctc | | rec_r34_vd_none_none_ctc.yml | Rosetta | Resnet34_vd | None | None | ctc | -| rec_r34_vd_tps_bilstm_attn.yml | RARE | Resnet34_vd | tps | BiLSTM | attention | | rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc | For training Chinese data, it is recommended to use diff --git a/doc/joinus.PNG b/doc/joinus.PNG index fa11f286..a6e94748 100644 Binary files a/doc/joinus.PNG and b/doc/joinus.PNG differ diff --git a/ppocr/utils/ic15_dict.txt b/ppocr/utils/ic15_dict.txt index 71043689..47406036 100644 --- a/ppocr/utils/ic15_dict.txt +++ b/ppocr/utils/ic15_dict.txt @@ -33,4 +33,4 @@ v w x y -z +z \ No newline at end of file