Merge pull request #2105 from LDOUBLEV/cp20

[cherry-pick] PR2073 PR2091
This commit is contained in:
Double_V 2021-03-01 11:37:38 +08:00 committed by GitHub
commit 76752b6084
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 6 additions and 9 deletions

View File

@ -76,7 +76,7 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
float(*std::max_element(&predict_batch[n * predict_shape[2]], float(*std::max_element(&predict_batch[n * predict_shape[2]],
&predict_batch[(n + 1) * predict_shape[2]])); &predict_batch[(n + 1) * predict_shape[2]]));
if (argmax_idx > 0 && (!(i > 0 && argmax_idx == last_index))) { if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
score += max_value; score += max_value;
count += 1; count += 1;
str_res.push_back(label_list_[argmax_idx]); str_res.push_back(label_list_[argmax_idx]);

View File

@ -32,7 +32,6 @@ class MakeShrinkMap(object):
text_polys, ignore_tags = self.validate_polygons(text_polys, text_polys, ignore_tags = self.validate_polygons(text_polys,
ignore_tags, h, w) ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32) gt = np.zeros((h, w), dtype=np.float32)
# gt = np.zeros((1, h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32) mask = np.ones((h, w), dtype=np.float32)
for i in range(len(text_polys)): for i in range(len(text_polys)):
polygon = text_polys[i] polygon = text_polys[i]
@ -51,7 +50,8 @@ class MakeShrinkMap(object):
shrinked = [] shrinked = []
# Increase the shrink ratio every time we get multiple polygon returned back # Increase the shrink ratio every time we get multiple polygon returned back
possible_ratios = np.arange(self.shrink_ratio, 1, self.shrink_ratio) possible_ratios = np.arange(self.shrink_ratio, 1,
self.shrink_ratio)
np.append(possible_ratios, 1) np.append(possible_ratios, 1)
# print(possible_ratios) # print(possible_ratios)
for ratio in possible_ratios: for ratio in possible_ratios:

View File

@ -39,10 +39,7 @@ class TextDetector(object):
self.args = args self.args = args
self.det_algorithm = args.det_algorithm self.det_algorithm = args.det_algorithm
pre_process_list = [{ pre_process_list = [{
'DetResizeForTest': { 'DetResizeForTest': None
'limit_side_len': args.det_limit_side_len,
'limit_type': args.det_limit_type
}
}, { }, {
'NormalizeImage': { 'NormalizeImage': {
'std': [0.229, 0.224, 0.225], 'std': [0.229, 0.224, 0.225],

View File

@ -97,7 +97,7 @@ def main():
preds = model(images) preds = model(images)
post_result = post_process_class(preds, shape_list) post_result = post_process_class(preds, shape_list)
boxes = post_result[0]['points'] boxes = post_result[0]['points']
# write resule # write result
dt_boxes_json = [] dt_boxes_json = []
for box in boxes: for box in boxes:
tmp_json = {"transcription": ""} tmp_json = {"transcription": ""}