Merge pull request #754 from tink2123/lan_doc

multi-languages doc
This commit is contained in:
MissPenguin 2020-09-19 18:59:12 +08:00 committed by GitHub
commit 77cd8c1e66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 48 additions and 13 deletions

View File

@ -16,7 +16,7 @@ Global:
loss_type: ctc
distort: false
use_space_char: false
reader_yml: ./configs/rec/rec_en_reader.yml
reader_yml: ./configs/rec/multi_languages/rec_en_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:

View File

@ -16,7 +16,7 @@ Global:
loss_type: ctc
distort: true
use_space_char: false
reader_yml: ./configs/rec/rec_french_reader.yml
reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:

View File

@ -16,7 +16,7 @@ Global:
loss_type: ctc
distort: true
use_space_char: false
reader_yml: ./configs/rec/rec_ger_reader.yml
reader_yml: ./configs/rec/multi_languages/rec_ger_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:

View File

@ -16,7 +16,7 @@ Global:
loss_type: ctc
distort: true
use_space_char: false
reader_yml: ./configs/rec/rec_japan_reader.yml
reader_yml: ./configs/rec/multi_languages/rec_japan_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:

View File

@ -16,7 +16,7 @@ Global:
loss_type: ctc
distort: true
use_space_char: false
reader_yml: ./configs/rec/rec_korean_reader.yml
reader_yml: ./configs/rec/multi_languages/rec_korean_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:

View File

@ -24,6 +24,7 @@ inference 模型(`fluid.io.save_inference_model`保存的模型)
- [2. 基于CTC损失的识别模型推理](#基于CTC损失的识别模型推理)
- [3. 基于Attention损失的识别模型推理](#基于Attention损失的识别模型推理)
- [4. 自定义文本识别字典的推理](#自定义文本识别字典的推理)
- [5. 多语言模型的推理](#多语言模型的推理)
- [四、方向分类模型推理](#方向识别模型推理)
- [1. 方向分类模型推理](#方向分类模型推理)
@ -305,6 +306,22 @@ dict_character = list(self.character_str)
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_char_dict_path="your text dict path"
```
<a name="多语言模型的推理"></a>
### 5. 多语言模型的推理
如果您需要预测的是其他语言模型在使用inference模型预测时需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/` 路径下有默认提供的小语种字体,例如韩文识别:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/korean_dict.txt" --vis_font_path="doc/korean.ttf"
```
![](../imgs_words/korean/1.jpg)
执行命令后,上图的预测结果为:
``` text
2020-09-19 16:15:05,076-INFO: index: [205 206 38 39]
2020-09-19 16:15:05,077-INFO: word : 바탕으로
2020-09-19 16:15:05,077-INFO: score: 0.9171358942985535
```
<a name="方向分类模型推理"></a>
## 四、方向分类模型推理

View File

@ -49,10 +49,11 @@ PaddleOCR提供的可下载模型包括`预测模型`、`训练模型`、`预训
#### 3. 多语言识别模型(更多语言持续更新中...
|模型名称|模型简介|预测模型大小|下载地址|
|-|-|-|-|
|-|法文识别|-|[预测模型]() / [训练模型]()|
|-|德文识别|-|[预测模型]() / [训练模型]()|
|-|韩文识别|-|[预测模型]() / [训练模型]()|
|-|日文识别|-|[预测模型]() / [训练模型]()|
| french_ppocr_mobile_v1.1_rec |法文识别|2.1M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar)|
| german_ppocr_mobile_v1.1_rec |德文识别|2.1M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar)|
| korean_ppocr_mobile_v1.1_rec |韩文识别|3.4M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar)|
| japan_ppocr_mobile_v1.1_rec |日文识别|3.7M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar)|
<a name="文本方向分类模型"></a>
### 三、文本方向分类模型

View File

@ -208,7 +208,19 @@ Optimizer:
```
**注意,预测/评估时的配置文件请务必与训练一致。**
- 小语种
PaddleOCR也提供了多语言的 `configs/rec/multi_languages` 路径下的提供了多语言的配置文件目前PaddleOCR支持的多语言算法有
| 配置文件 | 算法名称 | backbone | trans | seq | pred | language
| :--------: | :-------: | :-------: | :-------: | :-----: | :-----: | :-----: |
| rec_en_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 英语
| rec_french_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 法语
| rec_ger_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 德语
| rec_japan_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 日语
| rec_korean_lite_train.yml | CRNN | Mobilenet_v3 small 0.5 | None | BiLSTM | ctc | 韩语
多语言模型训练方式与中文模型一致训练数据集均为100w的合成数据少量的字体和测试数据可以在[百度网盘]()上下载。
### 评估

BIN
doc/french.ttf Normal file

Binary file not shown.

BIN
doc/german.ttf Normal file

Binary file not shown.

BIN
doc/imgs_words/french/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.5 KiB

BIN
doc/imgs_words/french/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

BIN
doc/imgs_words/german/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.2 KiB

BIN
doc/imgs_words/japan/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

BIN
doc/imgs_words/korean/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

BIN
doc/imgs_words/korean/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

BIN
doc/japan.ttc Normal file

Binary file not shown.

BIN
doc/korean.ttf Normal file

Binary file not shown.

View File

@ -133,6 +133,7 @@ def main(args):
image_file_list = get_image_file_list(args.image_dir)
text_sys = TextSystem(args)
is_visualize = True
font_path = args.vis_font_path
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
@ -160,7 +161,7 @@ def main(args):
scores = [rec_res[i][1] for i in range(len(rec_res))]
draw_img = draw_ocr(
image, boxes, txts, scores, drop_score=drop_score)
image, boxes, txts, scores, drop_score=drop_score, font_path=font_path)
draw_img_save = "./inference_results/"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)

View File

@ -71,6 +71,10 @@ def parse_args():
type=str,
default="./ppocr/utils/ppocr_keys_v1.txt")
parser.add_argument("--use_space_char", type=str2bool, default=True)
parser.add_argument(
"--vis_font_path",
type=str,
default="./doc/simfang.ttf")
# params for text classifier
parser.add_argument("--use_angle_cls", type=str2bool, default=False)
@ -199,7 +203,7 @@ def draw_ocr(image,
return image
def draw_ocr_box_txt(image, boxes, txts):
def draw_ocr_box_txt(image, boxes, txts, font_path="./doc/simfang.ttf"):
h, w = image.height, image.width
img_left = image.copy()
img_right = Image.new('RGB', (w, h), (255, 255, 255))
@ -226,7 +230,7 @@ def draw_ocr_box_txt(image, boxes, txts):
if box_height > 2 * box_width:
font_size = max(int(box_width * 0.9), 10)
font = ImageFont.truetype(
"./doc/simfang.ttf", font_size, encoding="utf-8")
font_path, font_size, encoding="utf-8")
cur_y = box[0][1]
for c in txt:
char_size = font.getsize(c)
@ -236,7 +240,7 @@ def draw_ocr_box_txt(image, boxes, txts):
else:
font_size = max(int(box_height * 0.8), 10)
font = ImageFont.truetype(
"./doc/simfang.ttf", font_size, encoding="utf-8")
font_path, font_size, encoding="utf-8")
draw_right.text(
[box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
img_left = Image.blend(image, img_left, 0.5)