Merge branch 'update_requirements' of https://github.com/WenmuZhou/PaddleOCR into update_requirements

This commit is contained in:
WenmuZhou 2021-04-17 19:29:49 +08:00
commit 7b7c8f3bb7
25 changed files with 4981 additions and 5034 deletions

View File

@ -147,6 +147,7 @@ class MainWindow(QMainWindow, WindowMixin):
self.itemsToShapesbox = {}
self.shapesToItemsbox = {}
self.prevLabelText = getStr('tempLabel')
self.noLabelText = getStr('nullLabel')
self.model = 'paddle'
self.PPreader = None
self.autoSaveNum = 5
@ -1020,7 +1021,7 @@ class MainWindow(QMainWindow, WindowMixin):
item.setText(str([(int(p.x()), int(p.y())) for p in shape.points]))
self.updateComboBox()
def updateComboBox(self): # TODO貌似没用
def updateComboBox(self):
# Get the unique labels and add them to the Combobox.
itemsTextList = [str(self.labelList.item(i).text()) for i in range(self.labelList.count())]
@ -1040,7 +1041,7 @@ class MainWindow(QMainWindow, WindowMixin):
return dict(label=s.label, # str
line_color=s.line_color.getRgb(),
fill_color=s.fill_color.getRgb(),
points=[(p.x(), p.y()) for p in s.points], # QPonitF
points=[(int(p.x()), int(p.y())) for p in s.points], # QPonitF
# add chris
difficult=s.difficult) # bool
@ -1069,7 +1070,7 @@ class MainWindow(QMainWindow, WindowMixin):
# print('Image:{0} -> Annotation:{1}'.format(self.filePath, annotationFilePath))
return True
except:
self.errorMessage(u'Error saving label data')
self.errorMessage(u'Error saving label data', u'Error saving label data')
return False
def copySelectedShape(self):
@ -1802,10 +1803,14 @@ class MainWindow(QMainWindow, WindowMixin):
result.insert(0, box)
print('result in reRec is ', result)
self.result_dic.append(result)
if result[1][0] == shape.label:
print('label no change')
else:
rec_flag += 1
else:
print('Can not recognise the box')
self.result_dic.append([box,(self.noLabelText,0)])
if self.noLabelText == shape.label or result[1][0] == shape.label:
print('label no change')
else:
rec_flag += 1
if len(self.result_dic) > 0 and rec_flag > 0:
self.saveFile(mode='Auto')
@ -1836,9 +1841,14 @@ class MainWindow(QMainWindow, WindowMixin):
print('label no change')
else:
shape.label = result[1][0]
self.singleLabel(shape)
self.setDirty()
print(box)
else:
print('Can not recognise the box')
if self.noLabelText == shape.label:
print('label no change')
else:
shape.label = self.noLabelText
self.singleLabel(shape)
self.setDirty()
def autolcm(self):
vbox = QVBoxLayout()

View File

@ -45,7 +45,7 @@ class Canvas(QWidget):
CREATE, EDIT = list(range(2))
_fill_drawing = False # draw shadows
epsilon = 11.0
epsilon = 5.0
def __init__(self, *args, **kwargs):
super(Canvas, self).__init__(*args, **kwargs)

File diff suppressed because it is too large Load Diff

View File

@ -87,6 +87,7 @@ creatPolygon=四点标注
drawSquares=正方形标注
saveRec=保存识别结果
tempLabel=待识别
nullLabel=无法识别
steps=操作步骤
choseModelLg=选择模型语言
cancel=取消

View File

@ -77,7 +77,7 @@ IR=Image Resize
autoRecognition=Auto Recognition
reRecognition=Re-recognition
mfile=File
medit=Eidt
medit=Edit
mview=View
mhelp=Help
iconList=Icon List
@ -87,6 +87,7 @@ creatPolygon=Create Quadrilateral
drawSquares=Draw Squares
saveRec=Save Recognition Result
tempLabel=TEMPORARY
nullLabel=NULL
steps=Steps
choseModelLg=Choose Model Language
cancel=Cancel

View File

@ -32,7 +32,8 @@ PaddleOCR supports both dynamic graph and static graph programming paradigm
<div align="center">
<img src="doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
<img src="doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
<img src="doc/imgs_results/multi_lang/img_01.jpg" width="800">
<img src="doc/imgs_results/multi_lang/img_02.jpg" width="800">
</div>
The above pictures are the visualizations of the general ppocr_server model. For more effect pictures, please see [More visualizations](./doc/doc_en/visualization_en.md).

View File

@ -62,20 +62,21 @@ PostProcess:
mode: fast # fast or slow two ways
Metric:
name: E2EMetric
gt_mat_dir: # the dir of gt_mat
gt_mat_dir: ./train_data/total_text/gt # the dir of gt_mat
character_dict_path: ppocr/utils/ic15_dict.txt
main_indicator: f_score_e2e
Train:
dataset:
name: PGDataSet
label_file_list: [.././train_data/total_text/train/]
data_dir: ./train_data/total_text/train
label_file_list: [./train_data/total_text/train/]
ratio_list: [1.0]
data_format: icdar #two data format: icdar/textnet
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- E2ELabelEncode:
- PGProcessTrain:
batch_size: 14 # same as loader: batch_size_per_card
min_crop_size: 24
@ -92,13 +93,12 @@ Train:
Eval:
dataset:
name: PGDataSet
data_dir: ./train_data/
data_dir: ./train_data/total_text/test
label_file_list: [./train_data/total_text/test/]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- E2ELabelEncode:
- E2EResizeForTest:
max_side_len: 768
- NormalizeImage:
@ -108,7 +108,7 @@ Eval:
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'shape', 'polys', 'strs', 'tags', 'img_id']
keep_keys: [ 'image', 'shape', 'img_id']
loader:
shuffle: False
drop_last: False

View File

@ -118,7 +118,6 @@ class ArgsParser(ArgumentParser):
return config
def _set_language(self, type):
print("type:", type)
lang = type[0]
assert (type), "please use -l or --language to choose language type"
assert(

View File

@ -113,7 +113,7 @@ python3 generate_multi_language_configs.py -l it \
| cyrillic_mobile_v2.0_rec | 斯拉夫字母 | [rec_cyrillic_lite_train.yml](../../configs/rec/multi_language/rec_cyrillic_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_train.tar) |
| devanagari_mobile_v2.0_rec | 梵文字母 | [rec_devanagari_lite_train.yml](../../configs/rec/multi_language/rec_devanagari_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar) |
更多支持语种请参考: [多语言模型](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/multi_languages.md#%E8%AF%AD%E7%A7%8D%E7%BC%A9%E5%86%99)
更多支持语种请参考: [多语言模型](./multi_languages.md)
<a name="文本方向分类模型"></a>

View File

@ -134,7 +134,7 @@ paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
<a name="python_脚本运行"></a>
### 2.2 python 脚本运行
ppocr 也支持在python脚本中运行便于嵌入到您自己的代码中
ppocr 也支持在python脚本中运行便于嵌入到您自己的代码中
* 整图预测(检测+识别)
@ -155,7 +155,7 @@ image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/korean.ttf')
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
@ -240,7 +240,7 @@ ppocr 支持使用自己的数据进行自定义训练或finetune, 其中识别
|德文|german|german|
|日文|japan|japan|
|韩文|korean|korean|
|中文繁体|chinese traditional |ch_tra|
|中文繁体|chinese traditional |chinese_cht|
|意大利文| Italian |it|
|西班牙文|Spanish |es|
|葡萄牙文| Portuguese|pt|
@ -259,10 +259,9 @@ ppocr 支持使用自己的数据进行自定义训练或finetune, 其中识别
|乌克兰文|Ukranian|uk|
|白俄罗斯文|Belarusian|be|
|泰卢固文|Telugu |te|
|卡纳达文|Kannada |kn|
|泰米尔文|Tamil |ta|
|南非荷兰文 |Afrikaans |af|
|阿塞拜疆文 |Azerbaijani |az|
|阿塞拜疆文 |Azerbaijani |az|
|波斯尼亚文|Bosnian|bs|
|捷克文|Czech|cs|
|威尔士文 |Welsh |cy|

View File

@ -111,7 +111,7 @@ python3 generate_multi_language_configs.py -l it \
| cyrillic_mobile_v2.0_rec | Lightweight model for cyrillic recognition | [rec_cyrillic_lite_train.yml](../../configs/rec/multi_language/rec_cyrillic_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_train.tar) |
| devanagari_mobile_v2.0_rec | Lightweight model for devanagari recognition | [rec_devanagari_lite_train.yml](../../configs/rec/multi_language/rec_devanagari_lite_train.yml) |2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_train.tar) |
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
For more supported languages, please refer to : [Multi-language model](./multi_languages_en.md)
<a name="Angle"></a>

View File

@ -153,7 +153,7 @@ image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/korean.ttf')
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
@ -232,7 +232,7 @@ For functions such as data annotation, you can read the complete [Document Tutor
|german|german|
|japan|japan|
|korean|korean|
|chinese traditional |ch_tra|
|chinese traditional |chinese_cht|
| Italian |it|
|Spanish |es|
| Portuguese|pt|
@ -251,7 +251,6 @@ For functions such as data annotation, you can read the complete [Document Tutor
|Ukranian|uk|
|Belarusian|be|
|Telugu |te|
|Kannada |kn|
|Tamil |ta|
|Afrikaans |af|
|Azerbaijani |az|

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 231 KiB

View File

@ -30,6 +30,7 @@ from ppocr.utils.logging import get_logger
logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
from tools.infer.utility import draw_ocr
__all__ = ['PaddleOCR']
@ -117,7 +118,7 @@ model_urls = {
}
SUPPORT_DET_MODEL = ['DB']
VERSION = 2.1
VERSION = '2.1'
SUPPORT_REC_MODEL = ['CRNN']
BASE_DIR = os.path.expanduser("~/.paddleocr/")
@ -315,14 +316,13 @@ class PaddleOCR(predict_system.TextSystem):
# init model dir
if postprocess_params.det_model_dir is None:
postprocess_params.det_model_dir = os.path.join(
BASE_DIR, '{}/det/{}'.format(VERSION, det_lang))
postprocess_params.det_model_dir = os.path.join(BASE_DIR, VERSION,
'det', det_lang)
if postprocess_params.rec_model_dir is None:
postprocess_params.rec_model_dir = os.path.join(
BASE_DIR, '{}/rec/{}'.format(VERSION, lang))
postprocess_params.rec_model_dir = os.path.join(BASE_DIR, VERSION,
'rec', lang)
if postprocess_params.cls_model_dir is None:
postprocess_params.cls_model_dir = os.path.join(
BASE_DIR, '{}/cls'.format(VERSION))
postprocess_params.cls_model_dir = os.path.join(BASE_DIR, 'cls')
print(postprocess_params)
# download model
maybe_download(postprocess_params.det_model_dir,

View File

@ -96,7 +96,7 @@ class BaseRecLabelEncode(object):
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
'EN', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs',
'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi',
'mr', 'ne'
'mr', 'ne', 'latin', 'arabic', 'cyrillic', 'devanagari'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type)
@ -187,29 +187,31 @@ class CTCLabelEncode(BaseRecLabelEncode):
return dict_character
class E2ELabelEncode(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='EN',
use_space_char=False,
**kwargs):
super(E2ELabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
self.pad_num = len(self.dict) # the length to pad
class E2ELabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
texts = data['strs']
temp_texts = []
for text in texts:
text = text.lower()
text = self.encode(text)
if text is None:
return None
text = text + [self.pad_num] * (self.max_text_len - len(text))
temp_texts.append(text)
data['strs'] = np.array(temp_texts)
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data

View File

@ -88,7 +88,7 @@ class PGProcessTrain(object):
return min_area_quad
def check_and_validate_polys(self, polys, tags, xxx_todo_changeme):
def check_and_validate_polys(self, polys, tags, im_size):
"""
check so that the text poly is in the same direction,
and also filter some invalid polygons
@ -96,7 +96,7 @@ class PGProcessTrain(object):
:param tags:
:return:
"""
(h, w) = xxx_todo_changeme
(h, w) = im_size
if polys.shape[0] == 0:
return polys, np.array([]), np.array([])
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
@ -750,8 +750,8 @@ class PGProcessTrain(object):
input_size = 512
im = data['image']
text_polys = data['polys']
text_tags = data['tags']
text_strs = data['strs']
text_tags = data['ignore_tags']
text_strs = data['texts']
h, w, _ = im.shape
text_polys, text_tags, hv_tags = self.check_and_validate_polys(
text_polys, text_tags, (h, w))

View File

@ -29,20 +29,20 @@ class PGDataSet(Dataset):
dataset_config = config[mode]['dataset']
loader_config = config[mode]['loader']
self.delimiter = dataset_config.get('delimiter', '\t')
label_file_list = dataset_config.pop('label_file_list')
data_source_num = len(label_file_list)
ratio_list = dataset_config.get("ratio_list", [1.0])
if isinstance(ratio_list, (float, int)):
ratio_list = [float(ratio_list)] * int(data_source_num)
self.data_format = dataset_config.get('data_format', 'icdar')
assert len(
ratio_list
) == data_source_num, "The length of ratio_list should be the same as the file_list."
self.data_dir = dataset_config['data_dir']
self.do_shuffle = loader_config['shuffle']
logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list,
self.data_format)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
self.data_idx_order_list = list(range(len(self.data_lines)))
if mode.lower() == "train":
self.shuffle_data_random()
@ -55,108 +55,40 @@ class PGDataSet(Dataset):
random.shuffle(self.data_lines)
return
def extract_polys(self, poly_txt_path):
"""
Read text_polys, txt_tags, txts from give txt file.
"""
text_polys, txt_tags, txts = [], [], []
with open(poly_txt_path) as f:
for line in f.readlines():
poly_str, txt = line.strip().split('\t')
poly = list(map(float, poly_str.split(',')))
text_polys.append(
np.array(
poly, dtype=np.float32).reshape(-1, 2))
txts.append(txt)
txt_tags.append(txt == '###')
return np.array(list(map(np.array, text_polys))), \
np.array(txt_tags, dtype=np.bool), txts
def extract_info_textnet(self, im_fn, img_dir=''):
"""
Extract information from line in textnet format.
"""
info_list = im_fn.split('\t')
img_path = ''
for ext in [
'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'JPG'
]:
if os.path.exists(os.path.join(img_dir, info_list[0] + "." + ext)):
img_path = os.path.join(img_dir, info_list[0] + "." + ext)
break
if img_path == '':
print('Image {0} NOT found in {1}, and it will be ignored.'.format(
info_list[0], img_dir))
nBox = (len(info_list) - 1) // 9
wordBBs, txts, txt_tags = [], [], []
for n in range(0, nBox):
wordBB = list(map(float, info_list[n * 9 + 1:(n + 1) * 9]))
txt = info_list[(n + 1) * 9]
wordBBs.append([[wordBB[0], wordBB[1]], [wordBB[2], wordBB[3]],
[wordBB[4], wordBB[5]], [wordBB[6], wordBB[7]]])
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
return img_path, np.array(wordBBs, dtype=np.float32), txt_tags, txts
def get_image_info_list(self, file_list, ratio_list, data_format='textnet'):
def get_image_info_list(self, file_list, ratio_list):
if isinstance(file_list, str):
file_list = [file_list]
data_lines = []
for idx, data_source in enumerate(file_list):
image_files = []
if data_format == 'icdar':
image_files = [(data_source, x) for x in
os.listdir(os.path.join(data_source, 'rgb'))
if x.split('.')[-1] in [
'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif',
'tiff', 'gif', 'JPG'
]]
elif data_format == 'textnet':
with open(data_source) as f:
image_files = [(data_source, x.strip())
for x in f.readlines()]
else:
print("Unrecognized data format...")
exit(-1)
random.seed(self.seed)
image_files = random.sample(
image_files, round(len(image_files) * ratio_list[idx]))
data_lines.extend(image_files)
for idx, file in enumerate(file_list):
with open(file, "rb") as f:
lines = f.readlines()
if self.mode == "train" or ratio_list[idx] < 1.0:
random.seed(self.seed)
lines = random.sample(lines,
round(len(lines) * ratio_list[idx]))
data_lines.extend(lines)
return data_lines
def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx]
data_path, data_line = self.data_lines[file_idx]
data_line = self.data_lines[file_idx]
try:
if self.data_format == 'icdar':
im_path = os.path.join(data_path, 'rgb', data_line)
poly_path = os.path.join(data_path, 'poly',
data_line.split('.')[0] + '.txt')
text_polys, text_tags, text_strs = self.extract_polys(poly_path)
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
if self.mode.lower() == 'eval':
img_id = int(data_line.split(".")[0][7:])
else:
image_dir = os.path.join(os.path.dirname(data_path), 'image')
im_path, text_polys, text_tags, text_strs = self.extract_info_textnet(
data_line, image_dir)
img_id = int(data_line.split(".")[0][3:])
data = {
'img_path': im_path,
'polys': text_polys,
'tags': text_tags,
'strs': text_strs,
'img_id': img_id
}
img_id = 0
data = {'img_path': img_path, 'label': label, 'img_id': img_id}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
outs = transform(data, self.ops)
except Exception as e:
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(

View File

@ -35,11 +35,11 @@ class E2EMetric(object):
self.reset()
def __call__(self, preds, batch, **kwargs):
img_id = batch[5][0]
img_id = batch[2][0]
e2e_info_list = [{
'points': det_polyon,
'text': pred_str
} for det_polyon, pred_str in zip(preds['points'], preds['strs'])]
'texts': pred_str
} for det_polyon, pred_str in zip(preds['points'], preds['texts'])]
result = get_socre(self.gt_mat_dir, img_id, e2e_info_list)
self.results.append(result)

View File

@ -28,7 +28,7 @@ class BaseRecLabelDecode(object):
'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
'ne', 'EN'
'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
]
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, character_type)

View File

@ -26,7 +26,7 @@ def get_socre(gt_dir, img_id, pred_dict):
n = len(pred_dict)
for i in range(n):
points = pred_dict[i]['points']
text = pred_dict[i]['text']
text = pred_dict[i]['texts']
point = ",".join(map(str, points.reshape(-1, )))
det.append([point, text])
return det

View File

@ -21,6 +21,7 @@ import math
import numpy as np
from itertools import groupby
from cv2.ximgproc import thinning as thin
from skimage.morphology._skeletonize import thin

View File

@ -64,7 +64,7 @@ class PGNet_PostProcess(object):
src_w, src_h, self.valid_set)
data = {
'points': poly_list,
'strs': keep_str_list,
'texts': keep_str_list,
}
return data
@ -176,6 +176,6 @@ class PGNet_PostProcess(object):
exit(-1)
data = {
'points': poly_list,
'strs': keep_str_list,
'texts': keep_str_list,
}
return data

View File

@ -122,7 +122,7 @@ class TextE2E(object):
else:
raise NotImplementedError
post_result = self.postprocess_op(preds, shape_list)
points, strs = post_result['points'], post_result['strs']
points, strs = post_result['points'], post_result['texts']
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
elapse = time.time() - starttime
return dt_boxes, strs, elapse

View File

@ -103,7 +103,7 @@ def main():
images = paddle.to_tensor(images)
preds = model(images)
post_result = post_process_class(preds, shape_list)
points, strs = post_result['points'], post_result['strs']
points, strs = post_result['points'], post_result['texts']
# write resule
dt_boxes_json = []
for poly, str in zip(points, strs):