format angle_class
This commit is contained in:
parent
a671fdfb99
commit
7b9283536d
|
@ -1,14 +1,24 @@
|
|||
## 文字角度分类
|
||||
### 方法介绍
|
||||
文字角度分类主要用于图片非0度的场景下,在这种场景下需要对图片里检测到的文本行进行一个转正的操作。在PaddleOCR系统内,
|
||||
# 文本方向分类器
|
||||
|
||||
- [方法介绍](#方法介绍)
|
||||
- [数据准备](#数据准备)
|
||||
- [启动训练](#启动训练)
|
||||
- [训练](#训练)
|
||||
- [评估](#评估)
|
||||
- [预测](#预测)
|
||||
|
||||
<a name="方法介绍"></a>
|
||||
## 方法介绍
|
||||
文本方向分类器主要用于图片非0度的场景下,在这种场景下需要对图片里检测到的文本行进行一个转正的操作。在PaddleOCR系统内,
|
||||
文字检测之后得到的文本行图片经过仿射变换之后送入识别模型,此时只需要对文字进行一个0和180度的角度分类,因此PaddleOCR内置的
|
||||
文字角度分类器**只支持了0和180度的分类**。如果想支持更多角度,可以自己修改算法进行支持。
|
||||
文本方向分类器**只支持了0和180度的分类**。如果想支持更多角度,可以自己修改算法进行支持。
|
||||
|
||||
0和180度数据样本例子:
|
||||
|
||||
![](../imgs_results/angle_class_example.jpg)
|
||||
|
||||
### 数据准备
|
||||
<a name="数据准备"></a>
|
||||
## 数据准备
|
||||
|
||||
请按如下步骤设置数据集:
|
||||
|
||||
|
@ -59,8 +69,8 @@ train/cls/train/word_002.jpg 180
|
|||
|- word_003.jpg
|
||||
| ...
|
||||
```
|
||||
|
||||
### 启动训练
|
||||
<a name="启动训练"></a>
|
||||
## 启动训练
|
||||
|
||||
将准备好的txt文件和图片文件夹路径分别写入配置文件的 `Train/Eval.dataset.label_file_list` 和 `Train/Eval.dataset.data_dir` 字段下,`Train/Eval.dataset.data_dir`字段下的路径和文件里记载的图片名构成了图片的绝对路径。
|
||||
|
||||
|
@ -88,7 +98,8 @@ PaddleOCR提供了多种数据增强方式,如果您希望在训练时加入
|
|||
|
||||
*由于OpenCV的兼容性问题,扰动操作暂时只支持linux*
|
||||
|
||||
### 训练
|
||||
<a name="训练"></a>
|
||||
## 训练
|
||||
|
||||
PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml` 中修改 `eval_batch_step` 设置评估频率,默认每1000个iter评估一次。训练过程中将会保存如下内容:
|
||||
```bash
|
||||
|
@ -106,7 +117,8 @@ PaddleOCR支持训练和评估交替进行, 可以在 `configs/cls/cls_mv3.yml`
|
|||
|
||||
**注意,预测/评估时的配置文件请务必与训练一致。**
|
||||
|
||||
### 评估
|
||||
<a name="评估"></a>
|
||||
## 评估
|
||||
|
||||
评估数据集可以通过修改`configs/cls/cls_mv3.yml`文件里的`Eval.dataset.label_file_list` 字段设置。
|
||||
|
||||
|
@ -116,7 +128,8 @@ export CUDA_VISIBLE_DEVICES=0
|
|||
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
### 预测
|
||||
<a name="预测"></a>
|
||||
## 预测
|
||||
|
||||
* 训练引擎的预测
|
||||
|
||||
|
|
|
@ -1,13 +1,22 @@
|
|||
## TEXT ANGLE CLASSIFICATION
|
||||
# TEXT ANGLE CLASSIFICATION
|
||||
|
||||
### Method introduction
|
||||
- [Method introduction](#method-introduction)
|
||||
- [DATA PREPARATION](#data-preparation)
|
||||
- [TRAINING](#training)
|
||||
- [EVALUATION](#evaluation)
|
||||
- [PREDICTION](#prediction)
|
||||
|
||||
<a name="method-introduction"></a>
|
||||
## Method introduction
|
||||
The angle classification is used in the scene where the image is not 0 degrees. In this scene, it is necessary to perform a correction operation on the text line detected in the picture. In the PaddleOCR system,
|
||||
The text line image obtained after text detection is sent to the recognition model after affine transformation. At this time, only a 0 and 180 degree angle classification of the text is required, so the built-in PaddleOCR text angle classifier **only supports 0 and 180 degree classification**. If you want to support more angles, you can modify the algorithm yourself to support.
|
||||
|
||||
Example of 0 and 180 degree data samples:
|
||||
|
||||
![](../imgs_results/angle_class_example.jpg)
|
||||
### DATA PREPARATION
|
||||
|
||||
<a name="data-preparation"></a>
|
||||
## DATA PREPARATION
|
||||
|
||||
Please organize the dataset as follows:
|
||||
|
||||
|
@ -62,8 +71,8 @@ containing all images (test) and a cls_gt_test.txt. The structure of the test se
|
|||
|- word_003.jpg
|
||||
| ...
|
||||
```
|
||||
|
||||
### TRAINING
|
||||
<a name="training"></a>
|
||||
## TRAINING
|
||||
Write the prepared txt file and image folder path into the configuration file under the `Train/Eval.dataset.label_file_list` and `Train/Eval.dataset.data_dir` fields, the absolute path of the image consists of the `Train/Eval.dataset.data_dir` field and the image name recorded in the txt file.
|
||||
|
||||
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts.
|
||||
|
@ -107,7 +116,8 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
|
|||
|
||||
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
|
||||
|
||||
### EVALUATION
|
||||
<a name="evaluation"></a>
|
||||
## EVALUATION
|
||||
|
||||
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/cls/cls_mv3.yml` file.
|
||||
|
||||
|
@ -116,8 +126,8 @@ export CUDA_VISIBLE_DEVICES=0
|
|||
# GPU evaluation, Global.checkpoints is the weight to be tested
|
||||
python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy
|
||||
```
|
||||
|
||||
### PREDICTION
|
||||
<a name="prediction"></a>
|
||||
## PREDICTION
|
||||
|
||||
* Training engine prediction
|
||||
|
||||
|
|
Loading…
Reference in New Issue