yml文件去除个人路径

This commit is contained in:
WenmuZhou 2020-10-22 18:20:20 +08:00
parent 388d8dae33
commit 7c96520de7
5 changed files with 133 additions and 28 deletions

View File

@ -3,15 +3,15 @@ Global:
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/20201015_r50/
save_model_dir: ./output/det_r50_vd/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 8
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: /home/zhoujun20/pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
checkpoints:
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_en/img_10.jpg
@ -65,9 +65,9 @@ Metric:
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
data_dir: ./detection/
file_list:
- /home/zhoujun20/detection/train_icdar2015_label.txt # dataset1
- ./detection/train_icdar2015_label.txt # dataset1
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
@ -107,9 +107,9 @@ TRAIN:
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
data_dir: ./detection/
file_list:
- /home/zhoujun20/detection/test_icdar2015_label.txt
- ./detection/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR

View File

@ -68,7 +68,7 @@ TRAIN:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/real_data.txt # dataset1
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
@ -91,7 +91,7 @@ EVAL:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/label_val_all.txt
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR

View File

@ -1,25 +1,25 @@
Global:
use_gpu: false
epoch_num: 500
epoch_num: 72
log_smooth_window: 20
print_batch_step: 1
save_model_dir: ./output/rec/test/
print_batch_step: 10
save_model_dir: ./output/rec/mv3_none_none_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 1016
eval_batch_step: 2000
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints: #output/rec/rec_crnn/best_accuracy
checkpoints:
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: /home/zhoujun20/rec/lmdb/dict.txt
max_text_length: 25
character_dict_path:
character_type: 'en'
use_space_char: True
use_space_char: False
infer_mode: False
use_tps: False
@ -29,9 +29,9 @@ Optimizer:
beta1: 0.9
beta2: 0.999
learning_rate:
name: Cosine
# name: Cosine
lr: 0.0005
warmup_epoch: 1
# warmup_epoch: 1
regularizer:
name: 'L2'
factor: 0.00001
@ -43,7 +43,7 @@ Architecture:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: small
model_name: large
small_stride: [ 1, 2, 2, 2 ]
Neck:
name: SequenceEncoder
@ -66,7 +66,7 @@ TRAIN:
dataset:
name: LMDBDateSet
file_list:
- /Users/zhoujun20/Downloads/evaluation_new # dataset1
- ./rec/train # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
@ -75,7 +75,7 @@ TRAIN:
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
image_shape: [ 3,32,100 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
@ -88,14 +88,14 @@ EVAL:
dataset:
name: LMDBDateSet
file_list:
- /home/zhoujun20/rec/lmdb/val
- ./rec/val/
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
image_shape: [ 3,32,100 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:

View File

@ -64,9 +64,9 @@ Metric:
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/rec
data_dir: ./rec
file_list:
- /home/zhoujun20/rec/real_data.txt # dataset1
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
@ -87,9 +87,9 @@ TRAIN:
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/rec
data_dir: ./rec
file_list:
- /home/zhoujun20/rec/label_val_all.txt
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR

View File

@ -0,0 +1,105 @@
Global:
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec/res34_none_none_ctc/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
name: Cosine
lr: 0.001
warmup_epoch: 4
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet
layers: 34
Neck:
name: SequenceEncoder
encoder_type: reshape
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/train.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 8
EVAL:
dataset:
name: SimpleDataSet
data_dir: ./rec
file_list:
- ./rec/val.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 8