Merge pull request #7 from LDOUBLEV/fixocr

add visualize code
This commit is contained in:
dyning 2020-05-13 21:32:05 +08:00 committed by GitHub
commit 8d602649d0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 96 additions and 19 deletions

BIN
doc/simfang.ttf Normal file

Binary file not shown.

View File

@ -109,6 +109,8 @@ class RecModel(object):
decoded_out, 'label':label}
return loader, outputs
elif mode == "export":
return [image, {'decoded_out': decoded_out}]
predict = predicts['predict']
predict = fluid.layers.softmax(predict)
return [image, {'decoded_out': decoded_out, 'predicts': predict}]
else:
return loader, {'decoded_out': decoded_out}

View File

@ -81,7 +81,7 @@ class DBPostProcess(object):
scores[index] = score
return boxes, scores
def unclip(self, box, unclip_ratio=1.5):
def unclip(self, box, unclip_ratio=2.0):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()

View File

@ -52,7 +52,8 @@ def main():
# check if set use_gpu=True in paddlepaddle cpu version
use_gpu = config['Global']['use_gpu']
program.check_gpu(True)
# program.check_gpu(True)
use_gpu = False
alg = config['Global']['algorithm']
assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']

View File

@ -116,10 +116,10 @@ class TextDetector(object):
rect_height = int(np.linalg.norm(box[0] - box[3]))
if rect_width <= 10 or rect_height <= 10:
continue
if diffh <= 10 and diffw <= 10:
box = self.expand_det_res(
copy.deepcopy(box), bbox_height, bbox_width, img_height,
img_width)
# if diffh <= 10 and diffw <= 10:
# box = self.expand_det_res(
# copy.deepcopy(box), bbox_height, bbox_width, img_height,
# img_width)
dt_boxes_new.append(box)
dt_boxes = np.array(dt_boxes_new)
return dt_boxes

View File

@ -22,28 +22,27 @@ import numpy as np
import math
import time
import json
import os
from PIL import Image, ImageDraw, ImageFont
from tools.infer.utility import draw_ocr
from ppocr.utils.utility import get_image_file_list
if __name__ == "__main__":
args = utility.parse_args()
text_sys = predict_system.TextSystem(args)
image_file_list = []
label_file_path = "./eval_perform/gt_res/test_chinese_ic15_500_4pts.txt"
img_set_path = "./eval_perform/"
with open(label_file_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
substr = line.decode('utf-8').strip("\n").split("\t")
if "lsvt" in substr[0]:
continue
image_file_list.append(substr[0])
if not os.path.exists(args.image_dir):
raise Exception("{} not exists !!".format(args.image_dir))
image_file_list = get_image_file_list(args.image_dir)
total_time_all = 0
count = 0
save_path = "./output/predict.txt"
save_path = "./inference_output/predict.txt"
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
fout = open(save_path, "wb")
for image_name in image_file_list:
image_file = img_set_path + image_name
image_file = image_name
img = cv2.imread(image_file)
if img is None:
logger.info("error in loading image:{}".format(image_file))
@ -68,6 +67,23 @@ if __name__ == "__main__":
"points": points,
"scores": score * 1.0
})
# draw predict box and text in image
# and save drawed image in save_path
image = Image.open(image_file)
boxes, txts, scores = [], [], []
for dic in bbox_list:
boxes.append(dic['points'])
txts.append(dic['transcription'])
scores.append(round(dic['scores'], 3))
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
draw_img_save = os.path.join(
os.path.dirname(save_path), "inference_draw",
os.path.basename(image_file))
if not os.path.exists(os.path.dirname(draw_img_save)):
os.makedirs(os.path.dirname(draw_img_save))
cv2.imwrite(draw_img_save, new_img[:, :, ::-1])
print("drawed img saved in {}".format(draw_img_save))
# save predicted results in txt file
otstr = image_name + "\t" + json.dumps(bbox_list) + "\n"
fout.write(otstr.encode('utf-8'))
avg_time = total_time_all / count

View File

@ -21,6 +21,8 @@ from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
import cv2
import numpy as np
import json
from PIL import Image, ImageDraw, ImageFont
def parse_args():
@ -108,3 +110,59 @@ def draw_text_det_res(dt_boxes, img_path):
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
img_name_pure = img_path.split("/")[-1]
cv2.imwrite("./output/%s" % img_name_pure, src_im)
def draw_ocr(image, boxes, txts, scores, draw_txt):
from PIL import Image, ImageDraw, ImageFont
w, h = image.size
img = image.copy()
draw = ImageDraw.Draw(img)
for (box, txt) in zip(boxes, txts):
draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
if draw_txt:
txt_color = (0, 0, 0)
blank_img = np.ones(shape=[h, 800], dtype=np.int8) * 255
blank_img = Image.fromarray(blank_img).convert("RGB")
draw_txt = ImageDraw.Draw(blank_img)
font_size = 30
gap = 40 if h // len(txts) >= font_size else h // len(txts)
for i, txt in enumerate(txts):
font = ImageFont.truetype(
"./doc/simfang.TTF", font_size, encoding="utf-8")
new_txt = str(i) + ': ' + txt + ' ' + str(scores[i])
draw_txt.text((20, gap * (i + 1)), new_txt, txt_color, font=font)
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
return img
if __name__ == '__main__':
test_img = "./doc/test_v2"
predict_txt = "./doc/predict.txt"
f = open(predict_txt, 'r')
data = f.readlines()
img_path, anno = data[0].strip().split('\t')
img_name = os.path.basename(img_path)
img_path = os.path.join(test_img, img_name)
image = Image.open(img_path)
data = json.loads(anno)
boxes, txts, scores = [], [], []
for dic in data:
boxes.append(dic['points'])
txts.append(dic['transcription'])
scores.append(round(dic['scores'], 3))
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
cv2.imwrite(img_name, new_img)