commit
8d602649d0
Binary file not shown.
|
@ -109,6 +109,8 @@ class RecModel(object):
|
|||
decoded_out, 'label':label}
|
||||
return loader, outputs
|
||||
elif mode == "export":
|
||||
return [image, {'decoded_out': decoded_out}]
|
||||
predict = predicts['predict']
|
||||
predict = fluid.layers.softmax(predict)
|
||||
return [image, {'decoded_out': decoded_out, 'predicts': predict}]
|
||||
else:
|
||||
return loader, {'decoded_out': decoded_out}
|
||||
|
|
|
@ -81,7 +81,7 @@ class DBPostProcess(object):
|
|||
scores[index] = score
|
||||
return boxes, scores
|
||||
|
||||
def unclip(self, box, unclip_ratio=1.5):
|
||||
def unclip(self, box, unclip_ratio=2.0):
|
||||
poly = Polygon(box)
|
||||
distance = poly.area * unclip_ratio / poly.length
|
||||
offset = pyclipper.PyclipperOffset()
|
||||
|
|
|
@ -52,7 +52,8 @@ def main():
|
|||
|
||||
# check if set use_gpu=True in paddlepaddle cpu version
|
||||
use_gpu = config['Global']['use_gpu']
|
||||
program.check_gpu(True)
|
||||
# program.check_gpu(True)
|
||||
use_gpu = False
|
||||
|
||||
alg = config['Global']['algorithm']
|
||||
assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE']
|
||||
|
|
|
@ -116,10 +116,10 @@ class TextDetector(object):
|
|||
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
||||
if rect_width <= 10 or rect_height <= 10:
|
||||
continue
|
||||
if diffh <= 10 and diffw <= 10:
|
||||
box = self.expand_det_res(
|
||||
copy.deepcopy(box), bbox_height, bbox_width, img_height,
|
||||
img_width)
|
||||
# if diffh <= 10 and diffw <= 10:
|
||||
# box = self.expand_det_res(
|
||||
# copy.deepcopy(box), bbox_height, bbox_width, img_height,
|
||||
# img_width)
|
||||
dt_boxes_new.append(box)
|
||||
dt_boxes = np.array(dt_boxes_new)
|
||||
return dt_boxes
|
||||
|
|
|
@ -22,28 +22,27 @@ import numpy as np
|
|||
import math
|
||||
import time
|
||||
import json
|
||||
import os
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from tools.infer.utility import draw_ocr
|
||||
from ppocr.utils.utility import get_image_file_list
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = utility.parse_args()
|
||||
text_sys = predict_system.TextSystem(args)
|
||||
|
||||
image_file_list = []
|
||||
label_file_path = "./eval_perform/gt_res/test_chinese_ic15_500_4pts.txt"
|
||||
img_set_path = "./eval_perform/"
|
||||
with open(label_file_path, "rb") as fin:
|
||||
lines = fin.readlines()
|
||||
for line in lines:
|
||||
substr = line.decode('utf-8').strip("\n").split("\t")
|
||||
if "lsvt" in substr[0]:
|
||||
continue
|
||||
image_file_list.append(substr[0])
|
||||
if not os.path.exists(args.image_dir):
|
||||
raise Exception("{} not exists !!".format(args.image_dir))
|
||||
image_file_list = get_image_file_list(args.image_dir)
|
||||
|
||||
total_time_all = 0
|
||||
count = 0
|
||||
save_path = "./output/predict.txt"
|
||||
save_path = "./inference_output/predict.txt"
|
||||
if not os.path.exists(os.path.dirname(save_path)):
|
||||
os.makedirs(os.path.dirname(save_path))
|
||||
fout = open(save_path, "wb")
|
||||
for image_name in image_file_list:
|
||||
image_file = img_set_path + image_name
|
||||
image_file = image_name
|
||||
img = cv2.imread(image_file)
|
||||
if img is None:
|
||||
logger.info("error in loading image:{}".format(image_file))
|
||||
|
@ -68,6 +67,23 @@ if __name__ == "__main__":
|
|||
"points": points,
|
||||
"scores": score * 1.0
|
||||
})
|
||||
# draw predict box and text in image
|
||||
# and save drawed image in save_path
|
||||
image = Image.open(image_file)
|
||||
boxes, txts, scores = [], [], []
|
||||
for dic in bbox_list:
|
||||
boxes.append(dic['points'])
|
||||
txts.append(dic['transcription'])
|
||||
scores.append(round(dic['scores'], 3))
|
||||
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
|
||||
draw_img_save = os.path.join(
|
||||
os.path.dirname(save_path), "inference_draw",
|
||||
os.path.basename(image_file))
|
||||
if not os.path.exists(os.path.dirname(draw_img_save)):
|
||||
os.makedirs(os.path.dirname(draw_img_save))
|
||||
cv2.imwrite(draw_img_save, new_img[:, :, ::-1])
|
||||
print("drawed img saved in {}".format(draw_img_save))
|
||||
# save predicted results in txt file
|
||||
otstr = image_name + "\t" + json.dumps(bbox_list) + "\n"
|
||||
fout.write(otstr.encode('utf-8'))
|
||||
avg_time = total_time_all / count
|
||||
|
|
|
@ -21,6 +21,8 @@ from paddle.fluid.core import AnalysisConfig
|
|||
from paddle.fluid.core import create_paddle_predictor
|
||||
import cv2
|
||||
import numpy as np
|
||||
import json
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
|
||||
def parse_args():
|
||||
|
@ -108,3 +110,59 @@ def draw_text_det_res(dt_boxes, img_path):
|
|||
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
|
||||
img_name_pure = img_path.split("/")[-1]
|
||||
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
||||
|
||||
|
||||
def draw_ocr(image, boxes, txts, scores, draw_txt):
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
w, h = image.size
|
||||
img = image.copy()
|
||||
draw = ImageDraw.Draw(img)
|
||||
|
||||
for (box, txt) in zip(boxes, txts):
|
||||
|
||||
draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
|
||||
draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
|
||||
draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
|
||||
draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
|
||||
|
||||
if draw_txt:
|
||||
txt_color = (0, 0, 0)
|
||||
|
||||
blank_img = np.ones(shape=[h, 800], dtype=np.int8) * 255
|
||||
blank_img = Image.fromarray(blank_img).convert("RGB")
|
||||
draw_txt = ImageDraw.Draw(blank_img)
|
||||
|
||||
font_size = 30
|
||||
gap = 40 if h // len(txts) >= font_size else h // len(txts)
|
||||
|
||||
for i, txt in enumerate(txts):
|
||||
font = ImageFont.truetype(
|
||||
"./doc/simfang.TTF", font_size, encoding="utf-8")
|
||||
new_txt = str(i) + ': ' + txt + ' ' + str(scores[i])
|
||||
draw_txt.text((20, gap * (i + 1)), new_txt, txt_color, font=font)
|
||||
|
||||
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
|
||||
return img
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_img = "./doc/test_v2"
|
||||
predict_txt = "./doc/predict.txt"
|
||||
f = open(predict_txt, 'r')
|
||||
data = f.readlines()
|
||||
img_path, anno = data[0].strip().split('\t')
|
||||
img_name = os.path.basename(img_path)
|
||||
img_path = os.path.join(test_img, img_name)
|
||||
image = Image.open(img_path)
|
||||
|
||||
data = json.loads(anno)
|
||||
boxes, txts, scores = [], [], []
|
||||
for dic in data:
|
||||
boxes.append(dic['points'])
|
||||
txts.append(dic['transcription'])
|
||||
scores.append(round(dic['scores'], 3))
|
||||
|
||||
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
|
||||
|
||||
cv2.imwrite(img_name, new_img)
|
||||
|
|
Loading…
Reference in New Issue