add lite
This commit is contained in:
parent
b9e0a99832
commit
8d856ff08b
|
@ -0,0 +1,80 @@
|
||||||
|
ARM_ABI = arm8
|
||||||
|
export ARM_ABI
|
||||||
|
|
||||||
|
include ../Makefile.def
|
||||||
|
|
||||||
|
LITE_ROOT=../../../
|
||||||
|
|
||||||
|
THIRD_PARTY_DIR=${LITE_ROOT}/third_party
|
||||||
|
|
||||||
|
OPENCV_VERSION=opencv4.1.0
|
||||||
|
|
||||||
|
OPENCV_LIBS = ../../../third_party/${OPENCV_VERSION}/arm64-v8a/libs/libopencv_imgcodecs.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/libs/libopencv_imgproc.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/libs/libopencv_core.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libtegra_hal.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibjpeg-turbo.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibwebp.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibpng.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibjasper.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/liblibtiff.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libIlmImf.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libtbb.a \
|
||||||
|
../../../third_party/${OPENCV_VERSION}/arm64-v8a/3rdparty/libs/libcpufeatures.a
|
||||||
|
|
||||||
|
OPENCV_INCLUDE = -I../../../third_party/${OPENCV_VERSION}/arm64-v8a/include
|
||||||
|
|
||||||
|
CXX_INCLUDES = $(INCLUDES) ${OPENCV_INCLUDE} -I$(LITE_ROOT)/cxx/include
|
||||||
|
|
||||||
|
CXX_LIBS = ${OPENCV_LIBS} -L$(LITE_ROOT)/cxx/lib/ -lpaddle_light_api_shared $(SYSTEM_LIBS)
|
||||||
|
|
||||||
|
###############################################################
|
||||||
|
# How to use one of static libaray: #
|
||||||
|
# `libpaddle_api_full_bundled.a` #
|
||||||
|
# `libpaddle_api_light_bundled.a` #
|
||||||
|
###############################################################
|
||||||
|
# Note: default use lite's shared library. #
|
||||||
|
###############################################################
|
||||||
|
# 1. Comment above line using `libpaddle_light_api_shared.so`
|
||||||
|
# 2. Undo comment below line using `libpaddle_api_light_bundled.a`
|
||||||
|
|
||||||
|
#CXX_LIBS = $(LITE_ROOT)/cxx/lib/libpaddle_api_light_bundled.a $(SYSTEM_LIBS)
|
||||||
|
|
||||||
|
ocr_db_crnn: fetch_opencv ocr_db_crnn.o crnn_process.o db_post_process.o clipper.o cls_process.o
|
||||||
|
$(CC) $(SYSROOT_LINK) $(CXXFLAGS_LINK) ocr_db_crnn.o crnn_process.o db_post_process.o clipper.o cls_process.o -o ocr_db_crnn $(CXX_LIBS) $(LDFLAGS)
|
||||||
|
|
||||||
|
ocr_db_crnn.o: ocr_db_crnn.cc
|
||||||
|
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o ocr_db_crnn.o -c ocr_db_crnn.cc
|
||||||
|
|
||||||
|
crnn_process.o: fetch_opencv crnn_process.cc
|
||||||
|
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o crnn_process.o -c crnn_process.cc
|
||||||
|
|
||||||
|
cls_process.o: fetch_opencv cls_process.cc
|
||||||
|
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o cls_process.o -c cls_process.cc
|
||||||
|
|
||||||
|
db_post_process.o: fetch_clipper fetch_opencv db_post_process.cc
|
||||||
|
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o db_post_process.o -c db_post_process.cc
|
||||||
|
|
||||||
|
clipper.o: fetch_clipper
|
||||||
|
$(CC) $(SYSROOT_COMPLILE) $(CXX_DEFINES) $(CXX_INCLUDES) $(CXX_FLAGS) -o clipper.o -c clipper.cpp
|
||||||
|
|
||||||
|
fetch_clipper:
|
||||||
|
@test -e clipper.hpp || \
|
||||||
|
( echo "Fetch clipper " && \
|
||||||
|
wget -c https://paddle-inference-dist.cdn.bcebos.com/PaddleLite/Clipper/clipper.hpp)
|
||||||
|
@ test -e clipper.cpp || \
|
||||||
|
wget -c https://paddle-inference-dist.cdn.bcebos.com/PaddleLite/Clipper/clipper.cpp
|
||||||
|
|
||||||
|
fetch_opencv:
|
||||||
|
@ test -d ${THIRD_PARTY_DIR} || mkdir ${THIRD_PARTY_DIR}
|
||||||
|
@ test -e ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz || \
|
||||||
|
(echo "fetch opencv libs" && \
|
||||||
|
wget -P ${THIRD_PARTY_DIR} https://paddle-inference-dist.bj.bcebos.com/${OPENCV_VERSION}.tar.gz)
|
||||||
|
@ test -d ${THIRD_PARTY_DIR}/${OPENCV_VERSION} || \
|
||||||
|
tar -zxvf ${THIRD_PARTY_DIR}/${OPENCV_VERSION}.tar.gz -C ${THIRD_PARTY_DIR}
|
||||||
|
|
||||||
|
|
||||||
|
.PHONY: clean
|
||||||
|
clean:
|
||||||
|
rm -f ocr_db_crnn.o clipper.o db_post_process.o crnn_process.o cls_process.o
|
||||||
|
rm -f ocr_db_crnn
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,423 @@
|
||||||
|
/*******************************************************************************
|
||||||
|
* *
|
||||||
|
* Author : Angus Johnson *
|
||||||
|
* Version : 6.4.2 *
|
||||||
|
* Date : 27 February 2017 *
|
||||||
|
* Website : http://www.angusj.com *
|
||||||
|
* Copyright : Angus Johnson 2010-2017 *
|
||||||
|
* *
|
||||||
|
* License: *
|
||||||
|
* Use, modification & distribution is subject to Boost Software License Ver 1. *
|
||||||
|
* http://www.boost.org/LICENSE_1_0.txt *
|
||||||
|
* *
|
||||||
|
* Attributions: *
|
||||||
|
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
|
||||||
|
* "A generic solution to polygon clipping" *
|
||||||
|
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
|
||||||
|
* http://portal.acm.org/citation.cfm?id=129906 *
|
||||||
|
* *
|
||||||
|
* Computer graphics and geometric modeling: implementation and algorithms *
|
||||||
|
* By Max K. Agoston *
|
||||||
|
* Springer; 1 edition (January 4, 2005) *
|
||||||
|
* http://books.google.com/books?q=vatti+clipping+agoston *
|
||||||
|
* *
|
||||||
|
* See also: *
|
||||||
|
* "Polygon Offsetting by Computing Winding Numbers" *
|
||||||
|
* Paper no. DETC2005-85513 pp. 565-575 *
|
||||||
|
* ASME 2005 International Design Engineering Technical Conferences *
|
||||||
|
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
|
||||||
|
* September 24-28, 2005 , Long Beach, California, USA *
|
||||||
|
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
|
||||||
|
* *
|
||||||
|
*******************************************************************************/
|
||||||
|
|
||||||
|
#ifndef clipper_hpp
|
||||||
|
#define clipper_hpp
|
||||||
|
|
||||||
|
#define CLIPPER_VERSION "6.4.2"
|
||||||
|
|
||||||
|
// use_int32: When enabled 32bit ints are used instead of 64bit ints. This
|
||||||
|
// improve performance but coordinate values are limited to the range +/- 46340
|
||||||
|
//#define use_int32
|
||||||
|
|
||||||
|
// use_xyz: adds a Z member to IntPoint. Adds a minor cost to perfomance.
|
||||||
|
//#define use_xyz
|
||||||
|
|
||||||
|
// use_lines: Enables line clipping. Adds a very minor cost to performance.
|
||||||
|
#define use_lines
|
||||||
|
|
||||||
|
// use_deprecated: Enables temporary support for the obsolete functions
|
||||||
|
//#define use_deprecated
|
||||||
|
|
||||||
|
#include <cstdlib>
|
||||||
|
#include <cstring>
|
||||||
|
#include <functional>
|
||||||
|
#include <list>
|
||||||
|
#include <ostream>
|
||||||
|
#include <queue>
|
||||||
|
#include <set>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
namespace ClipperLib {
|
||||||
|
|
||||||
|
enum ClipType { ctIntersection, ctUnion, ctDifference, ctXor };
|
||||||
|
enum PolyType { ptSubject, ptClip };
|
||||||
|
// By far the most widely used winding rules for polygon filling are
|
||||||
|
// EvenOdd & NonZero (GDI, GDI+, XLib, OpenGL, Cairo, AGG, Quartz, SVG, Gr32)
|
||||||
|
// Others rules include Positive, Negative and ABS_GTR_EQ_TWO (only in OpenGL)
|
||||||
|
// see http://glprogramming.com/red/chapter11.html
|
||||||
|
enum PolyFillType { pftEvenOdd, pftNonZero, pftPositive, pftNegative };
|
||||||
|
|
||||||
|
#ifdef use_int32
|
||||||
|
typedef int cInt;
|
||||||
|
static cInt const loRange = 0x7FFF;
|
||||||
|
static cInt const hiRange = 0x7FFF;
|
||||||
|
#else
|
||||||
|
typedef signed long long cInt;
|
||||||
|
static cInt const loRange = 0x3FFFFFFF;
|
||||||
|
static cInt const hiRange = 0x3FFFFFFFFFFFFFFFLL;
|
||||||
|
typedef signed long long long64; // used by Int128 class
|
||||||
|
typedef unsigned long long ulong64;
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct IntPoint {
|
||||||
|
cInt X;
|
||||||
|
cInt Y;
|
||||||
|
#ifdef use_xyz
|
||||||
|
cInt Z;
|
||||||
|
IntPoint(cInt x = 0, cInt y = 0, cInt z = 0) : X(x), Y(y), Z(z){};
|
||||||
|
#else
|
||||||
|
IntPoint(cInt x = 0, cInt y = 0) : X(x), Y(y){};
|
||||||
|
#endif
|
||||||
|
|
||||||
|
friend inline bool operator==(const IntPoint &a, const IntPoint &b) {
|
||||||
|
return a.X == b.X && a.Y == b.Y;
|
||||||
|
}
|
||||||
|
friend inline bool operator!=(const IntPoint &a, const IntPoint &b) {
|
||||||
|
return a.X != b.X || a.Y != b.Y;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
typedef std::vector<IntPoint> Path;
|
||||||
|
typedef std::vector<Path> Paths;
|
||||||
|
|
||||||
|
inline Path &operator<<(Path &poly, const IntPoint &p) {
|
||||||
|
poly.push_back(p);
|
||||||
|
return poly;
|
||||||
|
}
|
||||||
|
inline Paths &operator<<(Paths &polys, const Path &p) {
|
||||||
|
polys.push_back(p);
|
||||||
|
return polys;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::ostream &operator<<(std::ostream &s, const IntPoint &p);
|
||||||
|
std::ostream &operator<<(std::ostream &s, const Path &p);
|
||||||
|
std::ostream &operator<<(std::ostream &s, const Paths &p);
|
||||||
|
|
||||||
|
struct DoublePoint {
|
||||||
|
double X;
|
||||||
|
double Y;
|
||||||
|
DoublePoint(double x = 0, double y = 0) : X(x), Y(y) {}
|
||||||
|
DoublePoint(IntPoint ip) : X((double)ip.X), Y((double)ip.Y) {}
|
||||||
|
};
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
#ifdef use_xyz
|
||||||
|
typedef void (*ZFillCallback)(IntPoint &e1bot, IntPoint &e1top, IntPoint &e2bot,
|
||||||
|
IntPoint &e2top, IntPoint &pt);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
enum InitOptions {
|
||||||
|
ioReverseSolution = 1,
|
||||||
|
ioStrictlySimple = 2,
|
||||||
|
ioPreserveCollinear = 4
|
||||||
|
};
|
||||||
|
enum JoinType { jtSquare, jtRound, jtMiter };
|
||||||
|
enum EndType {
|
||||||
|
etClosedPolygon,
|
||||||
|
etClosedLine,
|
||||||
|
etOpenButt,
|
||||||
|
etOpenSquare,
|
||||||
|
etOpenRound
|
||||||
|
};
|
||||||
|
|
||||||
|
class PolyNode;
|
||||||
|
typedef std::vector<PolyNode *> PolyNodes;
|
||||||
|
|
||||||
|
class PolyNode {
|
||||||
|
public:
|
||||||
|
PolyNode();
|
||||||
|
virtual ~PolyNode(){};
|
||||||
|
Path Contour;
|
||||||
|
PolyNodes Childs;
|
||||||
|
PolyNode *Parent;
|
||||||
|
PolyNode *GetNext() const;
|
||||||
|
bool IsHole() const;
|
||||||
|
bool IsOpen() const;
|
||||||
|
int ChildCount() const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
// PolyNode& operator =(PolyNode& other);
|
||||||
|
unsigned Index; // node index in Parent.Childs
|
||||||
|
bool m_IsOpen;
|
||||||
|
JoinType m_jointype;
|
||||||
|
EndType m_endtype;
|
||||||
|
PolyNode *GetNextSiblingUp() const;
|
||||||
|
void AddChild(PolyNode &child);
|
||||||
|
friend class Clipper; // to access Index
|
||||||
|
friend class ClipperOffset;
|
||||||
|
};
|
||||||
|
|
||||||
|
class PolyTree : public PolyNode {
|
||||||
|
public:
|
||||||
|
~PolyTree() { Clear(); };
|
||||||
|
PolyNode *GetFirst() const;
|
||||||
|
void Clear();
|
||||||
|
int Total() const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
// PolyTree& operator =(PolyTree& other);
|
||||||
|
PolyNodes AllNodes;
|
||||||
|
friend class Clipper; // to access AllNodes
|
||||||
|
};
|
||||||
|
|
||||||
|
bool Orientation(const Path &poly);
|
||||||
|
double Area(const Path &poly);
|
||||||
|
int PointInPolygon(const IntPoint &pt, const Path &path);
|
||||||
|
|
||||||
|
void SimplifyPolygon(const Path &in_poly, Paths &out_polys,
|
||||||
|
PolyFillType fillType = pftEvenOdd);
|
||||||
|
void SimplifyPolygons(const Paths &in_polys, Paths &out_polys,
|
||||||
|
PolyFillType fillType = pftEvenOdd);
|
||||||
|
void SimplifyPolygons(Paths &polys, PolyFillType fillType = pftEvenOdd);
|
||||||
|
|
||||||
|
void CleanPolygon(const Path &in_poly, Path &out_poly, double distance = 1.415);
|
||||||
|
void CleanPolygon(Path &poly, double distance = 1.415);
|
||||||
|
void CleanPolygons(const Paths &in_polys, Paths &out_polys,
|
||||||
|
double distance = 1.415);
|
||||||
|
void CleanPolygons(Paths &polys, double distance = 1.415);
|
||||||
|
|
||||||
|
void MinkowskiSum(const Path &pattern, const Path &path, Paths &solution,
|
||||||
|
bool pathIsClosed);
|
||||||
|
void MinkowskiSum(const Path &pattern, const Paths &paths, Paths &solution,
|
||||||
|
bool pathIsClosed);
|
||||||
|
void MinkowskiDiff(const Path &poly1, const Path &poly2, Paths &solution);
|
||||||
|
|
||||||
|
void PolyTreeToPaths(const PolyTree &polytree, Paths &paths);
|
||||||
|
void ClosedPathsFromPolyTree(const PolyTree &polytree, Paths &paths);
|
||||||
|
void OpenPathsFromPolyTree(PolyTree &polytree, Paths &paths);
|
||||||
|
|
||||||
|
void ReversePath(Path &p);
|
||||||
|
void ReversePaths(Paths &p);
|
||||||
|
|
||||||
|
struct IntRect {
|
||||||
|
cInt left;
|
||||||
|
cInt top;
|
||||||
|
cInt right;
|
||||||
|
cInt bottom;
|
||||||
|
};
|
||||||
|
|
||||||
|
// enums that are used internally ...
|
||||||
|
enum EdgeSide { esLeft = 1, esRight = 2 };
|
||||||
|
|
||||||
|
// forward declarations (for stuff used internally) ...
|
||||||
|
struct TEdge;
|
||||||
|
struct IntersectNode;
|
||||||
|
struct LocalMinimum;
|
||||||
|
struct OutPt;
|
||||||
|
struct OutRec;
|
||||||
|
struct Join;
|
||||||
|
|
||||||
|
typedef std::vector<OutRec *> PolyOutList;
|
||||||
|
typedef std::vector<TEdge *> EdgeList;
|
||||||
|
typedef std::vector<Join *> JoinList;
|
||||||
|
typedef std::vector<IntersectNode *> IntersectList;
|
||||||
|
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
// ClipperBase is the ancestor to the Clipper class. It should not be
|
||||||
|
// instantiated directly. This class simply abstracts the conversion of sets of
|
||||||
|
// polygon coordinates into edge objects that are stored in a LocalMinima list.
|
||||||
|
class ClipperBase {
|
||||||
|
public:
|
||||||
|
ClipperBase();
|
||||||
|
virtual ~ClipperBase();
|
||||||
|
virtual bool AddPath(const Path &pg, PolyType PolyTyp, bool Closed);
|
||||||
|
bool AddPaths(const Paths &ppg, PolyType PolyTyp, bool Closed);
|
||||||
|
virtual void Clear();
|
||||||
|
IntRect GetBounds();
|
||||||
|
bool PreserveCollinear() { return m_PreserveCollinear; };
|
||||||
|
void PreserveCollinear(bool value) { m_PreserveCollinear = value; };
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void DisposeLocalMinimaList();
|
||||||
|
TEdge *AddBoundsToLML(TEdge *e, bool IsClosed);
|
||||||
|
virtual void Reset();
|
||||||
|
TEdge *ProcessBound(TEdge *E, bool IsClockwise);
|
||||||
|
void InsertScanbeam(const cInt Y);
|
||||||
|
bool PopScanbeam(cInt &Y);
|
||||||
|
bool LocalMinimaPending();
|
||||||
|
bool PopLocalMinima(cInt Y, const LocalMinimum *&locMin);
|
||||||
|
OutRec *CreateOutRec();
|
||||||
|
void DisposeAllOutRecs();
|
||||||
|
void DisposeOutRec(PolyOutList::size_type index);
|
||||||
|
void SwapPositionsInAEL(TEdge *edge1, TEdge *edge2);
|
||||||
|
void DeleteFromAEL(TEdge *e);
|
||||||
|
void UpdateEdgeIntoAEL(TEdge *&e);
|
||||||
|
|
||||||
|
typedef std::vector<LocalMinimum> MinimaList;
|
||||||
|
MinimaList::iterator m_CurrentLM;
|
||||||
|
MinimaList m_MinimaList;
|
||||||
|
|
||||||
|
bool m_UseFullRange;
|
||||||
|
EdgeList m_edges;
|
||||||
|
bool m_PreserveCollinear;
|
||||||
|
bool m_HasOpenPaths;
|
||||||
|
PolyOutList m_PolyOuts;
|
||||||
|
TEdge *m_ActiveEdges;
|
||||||
|
|
||||||
|
typedef std::priority_queue<cInt> ScanbeamList;
|
||||||
|
ScanbeamList m_Scanbeam;
|
||||||
|
};
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
class Clipper : public virtual ClipperBase {
|
||||||
|
public:
|
||||||
|
Clipper(int initOptions = 0);
|
||||||
|
bool Execute(ClipType clipType, Paths &solution,
|
||||||
|
PolyFillType fillType = pftEvenOdd);
|
||||||
|
bool Execute(ClipType clipType, Paths &solution, PolyFillType subjFillType,
|
||||||
|
PolyFillType clipFillType);
|
||||||
|
bool Execute(ClipType clipType, PolyTree &polytree,
|
||||||
|
PolyFillType fillType = pftEvenOdd);
|
||||||
|
bool Execute(ClipType clipType, PolyTree &polytree, PolyFillType subjFillType,
|
||||||
|
PolyFillType clipFillType);
|
||||||
|
bool ReverseSolution() { return m_ReverseOutput; };
|
||||||
|
void ReverseSolution(bool value) { m_ReverseOutput = value; };
|
||||||
|
bool StrictlySimple() { return m_StrictSimple; };
|
||||||
|
void StrictlySimple(bool value) { m_StrictSimple = value; };
|
||||||
|
// set the callback function for z value filling on intersections (otherwise Z
|
||||||
|
// is 0)
|
||||||
|
#ifdef use_xyz
|
||||||
|
void ZFillFunction(ZFillCallback zFillFunc);
|
||||||
|
#endif
|
||||||
|
protected:
|
||||||
|
virtual bool ExecuteInternal();
|
||||||
|
|
||||||
|
private:
|
||||||
|
JoinList m_Joins;
|
||||||
|
JoinList m_GhostJoins;
|
||||||
|
IntersectList m_IntersectList;
|
||||||
|
ClipType m_ClipType;
|
||||||
|
typedef std::list<cInt> MaximaList;
|
||||||
|
MaximaList m_Maxima;
|
||||||
|
TEdge *m_SortedEdges;
|
||||||
|
bool m_ExecuteLocked;
|
||||||
|
PolyFillType m_ClipFillType;
|
||||||
|
PolyFillType m_SubjFillType;
|
||||||
|
bool m_ReverseOutput;
|
||||||
|
bool m_UsingPolyTree;
|
||||||
|
bool m_StrictSimple;
|
||||||
|
#ifdef use_xyz
|
||||||
|
ZFillCallback m_ZFill; // custom callback
|
||||||
|
#endif
|
||||||
|
void SetWindingCount(TEdge &edge);
|
||||||
|
bool IsEvenOddFillType(const TEdge &edge) const;
|
||||||
|
bool IsEvenOddAltFillType(const TEdge &edge) const;
|
||||||
|
void InsertLocalMinimaIntoAEL(const cInt botY);
|
||||||
|
void InsertEdgeIntoAEL(TEdge *edge, TEdge *startEdge);
|
||||||
|
void AddEdgeToSEL(TEdge *edge);
|
||||||
|
bool PopEdgeFromSEL(TEdge *&edge);
|
||||||
|
void CopyAELToSEL();
|
||||||
|
void DeleteFromSEL(TEdge *e);
|
||||||
|
void SwapPositionsInSEL(TEdge *edge1, TEdge *edge2);
|
||||||
|
bool IsContributing(const TEdge &edge) const;
|
||||||
|
bool IsTopHorz(const cInt XPos);
|
||||||
|
void DoMaxima(TEdge *e);
|
||||||
|
void ProcessHorizontals();
|
||||||
|
void ProcessHorizontal(TEdge *horzEdge);
|
||||||
|
void AddLocalMaxPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
|
||||||
|
OutPt *AddLocalMinPoly(TEdge *e1, TEdge *e2, const IntPoint &pt);
|
||||||
|
OutRec *GetOutRec(int idx);
|
||||||
|
void AppendPolygon(TEdge *e1, TEdge *e2);
|
||||||
|
void IntersectEdges(TEdge *e1, TEdge *e2, IntPoint &pt);
|
||||||
|
OutPt *AddOutPt(TEdge *e, const IntPoint &pt);
|
||||||
|
OutPt *GetLastOutPt(TEdge *e);
|
||||||
|
bool ProcessIntersections(const cInt topY);
|
||||||
|
void BuildIntersectList(const cInt topY);
|
||||||
|
void ProcessIntersectList();
|
||||||
|
void ProcessEdgesAtTopOfScanbeam(const cInt topY);
|
||||||
|
void BuildResult(Paths &polys);
|
||||||
|
void BuildResult2(PolyTree &polytree);
|
||||||
|
void SetHoleState(TEdge *e, OutRec *outrec);
|
||||||
|
void DisposeIntersectNodes();
|
||||||
|
bool FixupIntersectionOrder();
|
||||||
|
void FixupOutPolygon(OutRec &outrec);
|
||||||
|
void FixupOutPolyline(OutRec &outrec);
|
||||||
|
bool IsHole(TEdge *e);
|
||||||
|
bool FindOwnerFromSplitRecs(OutRec &outRec, OutRec *&currOrfl);
|
||||||
|
void FixHoleLinkage(OutRec &outrec);
|
||||||
|
void AddJoin(OutPt *op1, OutPt *op2, const IntPoint offPt);
|
||||||
|
void ClearJoins();
|
||||||
|
void ClearGhostJoins();
|
||||||
|
void AddGhostJoin(OutPt *op, const IntPoint offPt);
|
||||||
|
bool JoinPoints(Join *j, OutRec *outRec1, OutRec *outRec2);
|
||||||
|
void JoinCommonEdges();
|
||||||
|
void DoSimplePolygons();
|
||||||
|
void FixupFirstLefts1(OutRec *OldOutRec, OutRec *NewOutRec);
|
||||||
|
void FixupFirstLefts2(OutRec *InnerOutRec, OutRec *OuterOutRec);
|
||||||
|
void FixupFirstLefts3(OutRec *OldOutRec, OutRec *NewOutRec);
|
||||||
|
#ifdef use_xyz
|
||||||
|
void SetZ(IntPoint &pt, TEdge &e1, TEdge &e2);
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
class ClipperOffset {
|
||||||
|
public:
|
||||||
|
ClipperOffset(double miterLimit = 2.0, double roundPrecision = 0.25);
|
||||||
|
~ClipperOffset();
|
||||||
|
void AddPath(const Path &path, JoinType joinType, EndType endType);
|
||||||
|
void AddPaths(const Paths &paths, JoinType joinType, EndType endType);
|
||||||
|
void Execute(Paths &solution, double delta);
|
||||||
|
void Execute(PolyTree &solution, double delta);
|
||||||
|
void Clear();
|
||||||
|
double MiterLimit;
|
||||||
|
double ArcTolerance;
|
||||||
|
|
||||||
|
private:
|
||||||
|
Paths m_destPolys;
|
||||||
|
Path m_srcPoly;
|
||||||
|
Path m_destPoly;
|
||||||
|
std::vector<DoublePoint> m_normals;
|
||||||
|
double m_delta, m_sinA, m_sin, m_cos;
|
||||||
|
double m_miterLim, m_StepsPerRad;
|
||||||
|
IntPoint m_lowest;
|
||||||
|
PolyNode m_polyNodes;
|
||||||
|
|
||||||
|
void FixOrientations();
|
||||||
|
void DoOffset(double delta);
|
||||||
|
void OffsetPoint(int j, int &k, JoinType jointype);
|
||||||
|
void DoSquare(int j, int k);
|
||||||
|
void DoMiter(int j, int k, double r);
|
||||||
|
void DoRound(int j, int k);
|
||||||
|
};
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
class clipperException : public std::exception {
|
||||||
|
public:
|
||||||
|
clipperException(const char *description) : m_descr(description) {}
|
||||||
|
virtual ~clipperException() throw() {}
|
||||||
|
virtual const char *what() const throw() { return m_descr.c_str(); }
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::string m_descr;
|
||||||
|
};
|
||||||
|
//------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
} // ClipperLib namespace
|
||||||
|
|
||||||
|
#endif // clipper_hpp
|
|
@ -0,0 +1,43 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "cls_process.h" //NOLINT
|
||||||
|
#include <algorithm>
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
const std::vector<int> rec_image_shape{3, 48, 192};
|
||||||
|
|
||||||
|
cv::Mat ClsResizeImg(cv::Mat img) {
|
||||||
|
int imgC, imgH, imgW;
|
||||||
|
imgC = rec_image_shape[0];
|
||||||
|
imgH = rec_image_shape[1];
|
||||||
|
imgW = rec_image_shape[2];
|
||||||
|
|
||||||
|
float ratio = static_cast<float>(img.cols) / static_cast<float>(img.rows);
|
||||||
|
|
||||||
|
int resize_w, resize_h;
|
||||||
|
if (ceilf(imgH * ratio) > imgW)
|
||||||
|
resize_w = imgW;
|
||||||
|
else
|
||||||
|
resize_w = int(ceilf(imgH * ratio));
|
||||||
|
cv::Mat resize_img;
|
||||||
|
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||||
|
cv::INTER_LINEAR);
|
||||||
|
if (resize_w < imgW) {
|
||||||
|
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||||
|
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||||
|
}
|
||||||
|
return resize_img;
|
||||||
|
}
|
|
@ -0,0 +1,29 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstring>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "math.h" //NOLINT
|
||||||
|
#include "opencv2/core.hpp"
|
||||||
|
#include "opencv2/imgcodecs.hpp"
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
|
||||||
|
cv::Mat ClsResizeImg(cv::Mat img);
|
|
@ -0,0 +1,5 @@
|
||||||
|
max_side_len 960
|
||||||
|
det_db_thresh 0.3
|
||||||
|
det_db_box_thresh 0.5
|
||||||
|
det_db_unclip_ratio 1.6
|
||||||
|
use_direction_classify 0
|
|
@ -0,0 +1,115 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "crnn_process.h" //NOLINT
|
||||||
|
#include <algorithm>
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
const std::vector<int> rec_image_shape{3, 32, 320};
|
||||||
|
|
||||||
|
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio) {
|
||||||
|
int imgC, imgH, imgW;
|
||||||
|
imgC = rec_image_shape[0];
|
||||||
|
imgW = rec_image_shape[2];
|
||||||
|
imgH = rec_image_shape[1];
|
||||||
|
|
||||||
|
imgW = int(32 * wh_ratio);
|
||||||
|
|
||||||
|
float ratio = static_cast<float>(img.cols) / static_cast<float>(img.rows);
|
||||||
|
int resize_w, resize_h;
|
||||||
|
if (ceilf(imgH * ratio) > imgW)
|
||||||
|
resize_w = imgW;
|
||||||
|
else
|
||||||
|
resize_w = static_cast<int>(ceilf(imgH * ratio));
|
||||||
|
cv::Mat resize_img;
|
||||||
|
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||||
|
cv::INTER_LINEAR);
|
||||||
|
|
||||||
|
return resize_img;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> ReadDict(std::string path) {
|
||||||
|
std::ifstream in(path);
|
||||||
|
std::string filename;
|
||||||
|
std::string line;
|
||||||
|
std::vector<std::string> m_vec;
|
||||||
|
if (in) {
|
||||||
|
while (getline(in, line)) {
|
||||||
|
m_vec.push_back(line);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
std::cout << "no such file" << std::endl;
|
||||||
|
}
|
||||||
|
return m_vec;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat GetRotateCropImage(cv::Mat srcimage,
|
||||||
|
std::vector<std::vector<int>> box) {
|
||||||
|
cv::Mat image;
|
||||||
|
srcimage.copyTo(image);
|
||||||
|
std::vector<std::vector<int>> points = box;
|
||||||
|
|
||||||
|
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
|
||||||
|
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
|
||||||
|
int left = int(*std::min_element(x_collect, x_collect + 4));
|
||||||
|
int right = int(*std::max_element(x_collect, x_collect + 4));
|
||||||
|
int top = int(*std::min_element(y_collect, y_collect + 4));
|
||||||
|
int bottom = int(*std::max_element(y_collect, y_collect + 4));
|
||||||
|
|
||||||
|
cv::Mat img_crop;
|
||||||
|
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
|
||||||
|
|
||||||
|
for (int i = 0; i < points.size(); i++) {
|
||||||
|
points[i][0] -= left;
|
||||||
|
points[i][1] -= top;
|
||||||
|
}
|
||||||
|
|
||||||
|
int img_crop_width =
|
||||||
|
static_cast<int>(sqrt(pow(points[0][0] - points[1][0], 2) +
|
||||||
|
pow(points[0][1] - points[1][1], 2)));
|
||||||
|
int img_crop_height =
|
||||||
|
static_cast<int>(sqrt(pow(points[0][0] - points[3][0], 2) +
|
||||||
|
pow(points[0][1] - points[3][1], 2)));
|
||||||
|
|
||||||
|
cv::Point2f pts_std[4];
|
||||||
|
pts_std[0] = cv::Point2f(0., 0.);
|
||||||
|
pts_std[1] = cv::Point2f(img_crop_width, 0.);
|
||||||
|
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
|
||||||
|
pts_std[3] = cv::Point2f(0.f, img_crop_height);
|
||||||
|
|
||||||
|
cv::Point2f pointsf[4];
|
||||||
|
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
|
||||||
|
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
|
||||||
|
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
|
||||||
|
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
|
||||||
|
|
||||||
|
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
|
||||||
|
|
||||||
|
cv::Mat dst_img;
|
||||||
|
cv::warpPerspective(img_crop, dst_img, M,
|
||||||
|
cv::Size(img_crop_width, img_crop_height),
|
||||||
|
cv::BORDER_REPLICATE);
|
||||||
|
|
||||||
|
const float ratio = 1.5;
|
||||||
|
if (static_cast<float>(dst_img.rows) >=
|
||||||
|
static_cast<float>(dst_img.cols) * ratio) {
|
||||||
|
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
|
||||||
|
cv::transpose(dst_img, srcCopy);
|
||||||
|
cv::flip(srcCopy, srcCopy, 0);
|
||||||
|
return srcCopy;
|
||||||
|
} else {
|
||||||
|
return dst_img;
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,38 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <cstring>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "math.h" //NOLINT
|
||||||
|
#include "opencv2/core.hpp"
|
||||||
|
#include "opencv2/imgcodecs.hpp"
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
|
||||||
|
cv::Mat CrnnResizeImg(cv::Mat img, float wh_ratio);
|
||||||
|
|
||||||
|
std::vector<std::string> ReadDict(std::string path);
|
||||||
|
|
||||||
|
cv::Mat GetRotateCropImage(cv::Mat srcimage, std::vector<std::vector<int>> box);
|
||||||
|
|
||||||
|
template <class ForwardIterator>
|
||||||
|
inline size_t Argmax(ForwardIterator first, ForwardIterator last) {
|
||||||
|
return std::distance(first, std::max_element(first, last));
|
||||||
|
}
|
|
@ -0,0 +1,301 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "db_post_process.h" // NOLINT
|
||||||
|
#include <algorithm>
|
||||||
|
#include <utility>
|
||||||
|
|
||||||
|
void GetContourArea(std::vector<std::vector<float>> box, float unclip_ratio,
|
||||||
|
float &distance) {
|
||||||
|
int pts_num = 4;
|
||||||
|
float area = 0.0f;
|
||||||
|
float dist = 0.0f;
|
||||||
|
for (int i = 0; i < pts_num; i++) {
|
||||||
|
area += box[i][0] * box[(i + 1) % pts_num][1] -
|
||||||
|
box[i][1] * box[(i + 1) % pts_num][0];
|
||||||
|
dist += sqrtf((box[i][0] - box[(i + 1) % pts_num][0]) *
|
||||||
|
(box[i][0] - box[(i + 1) % pts_num][0]) +
|
||||||
|
(box[i][1] - box[(i + 1) % pts_num][1]) *
|
||||||
|
(box[i][1] - box[(i + 1) % pts_num][1]));
|
||||||
|
}
|
||||||
|
area = fabs(float(area / 2.0));
|
||||||
|
|
||||||
|
distance = area * unclip_ratio / dist;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::RotatedRect Unclip(std::vector<std::vector<float>> box,
|
||||||
|
float unclip_ratio) {
|
||||||
|
float distance = 1.0;
|
||||||
|
|
||||||
|
GetContourArea(box, unclip_ratio, distance);
|
||||||
|
|
||||||
|
ClipperLib::ClipperOffset offset;
|
||||||
|
ClipperLib::Path p;
|
||||||
|
p << ClipperLib::IntPoint(static_cast<int>(box[0][0]),
|
||||||
|
static_cast<int>(box[0][1]))
|
||||||
|
<< ClipperLib::IntPoint(static_cast<int>(box[1][0]),
|
||||||
|
static_cast<int>(box[1][1]))
|
||||||
|
<< ClipperLib::IntPoint(static_cast<int>(box[2][0]),
|
||||||
|
static_cast<int>(box[2][1]))
|
||||||
|
<< ClipperLib::IntPoint(static_cast<int>(box[3][0]),
|
||||||
|
static_cast<int>(box[3][1]));
|
||||||
|
offset.AddPath(p, ClipperLib::jtRound, ClipperLib::etClosedPolygon);
|
||||||
|
|
||||||
|
ClipperLib::Paths soln;
|
||||||
|
offset.Execute(soln, distance);
|
||||||
|
std::vector<cv::Point2f> points;
|
||||||
|
|
||||||
|
for (int j = 0; j < soln.size(); j++) {
|
||||||
|
for (int i = 0; i < soln[soln.size() - 1].size(); i++) {
|
||||||
|
points.emplace_back(soln[j][i].X, soln[j][i].Y);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
cv::RotatedRect res = cv::minAreaRect(points);
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> Mat2Vector(cv::Mat mat) {
|
||||||
|
std::vector<std::vector<float>> img_vec;
|
||||||
|
std::vector<float> tmp;
|
||||||
|
|
||||||
|
for (int i = 0; i < mat.rows; ++i) {
|
||||||
|
tmp.clear();
|
||||||
|
for (int j = 0; j < mat.cols; ++j) {
|
||||||
|
tmp.push_back(mat.at<float>(i, j));
|
||||||
|
}
|
||||||
|
img_vec.push_back(tmp);
|
||||||
|
}
|
||||||
|
return img_vec;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool XsortFp32(std::vector<float> a, std::vector<float> b) {
|
||||||
|
if (a[0] != b[0])
|
||||||
|
return a[0] < b[0];
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool XsortInt(std::vector<int> a, std::vector<int> b) {
|
||||||
|
if (a[0] != b[0])
|
||||||
|
return a[0] < b[0];
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<int>>
|
||||||
|
OrderPointsClockwise(std::vector<std::vector<int>> pts) {
|
||||||
|
std::vector<std::vector<int>> box = pts;
|
||||||
|
std::sort(box.begin(), box.end(), XsortInt);
|
||||||
|
|
||||||
|
std::vector<std::vector<int>> leftmost = {box[0], box[1]};
|
||||||
|
std::vector<std::vector<int>> rightmost = {box[2], box[3]};
|
||||||
|
|
||||||
|
if (leftmost[0][1] > leftmost[1][1])
|
||||||
|
std::swap(leftmost[0], leftmost[1]);
|
||||||
|
|
||||||
|
if (rightmost[0][1] > rightmost[1][1])
|
||||||
|
std::swap(rightmost[0], rightmost[1]);
|
||||||
|
|
||||||
|
std::vector<std::vector<int>> rect = {leftmost[0], rightmost[0], rightmost[1],
|
||||||
|
leftmost[1]};
|
||||||
|
return rect;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> GetMiniBoxes(cv::RotatedRect box, float &ssid) {
|
||||||
|
ssid = std::min(box.size.width, box.size.height);
|
||||||
|
|
||||||
|
cv::Mat points;
|
||||||
|
cv::boxPoints(box, points);
|
||||||
|
|
||||||
|
auto array = Mat2Vector(points);
|
||||||
|
std::sort(array.begin(), array.end(), XsortFp32);
|
||||||
|
|
||||||
|
std::vector<float> idx1 = array[0], idx2 = array[1], idx3 = array[2],
|
||||||
|
idx4 = array[3];
|
||||||
|
if (array[3][1] <= array[2][1]) {
|
||||||
|
idx2 = array[3];
|
||||||
|
idx3 = array[2];
|
||||||
|
} else {
|
||||||
|
idx2 = array[2];
|
||||||
|
idx3 = array[3];
|
||||||
|
}
|
||||||
|
if (array[1][1] <= array[0][1]) {
|
||||||
|
idx1 = array[1];
|
||||||
|
idx4 = array[0];
|
||||||
|
} else {
|
||||||
|
idx1 = array[0];
|
||||||
|
idx4 = array[1];
|
||||||
|
}
|
||||||
|
|
||||||
|
array[0] = idx1;
|
||||||
|
array[1] = idx2;
|
||||||
|
array[2] = idx3;
|
||||||
|
array[3] = idx4;
|
||||||
|
|
||||||
|
return array;
|
||||||
|
}
|
||||||
|
|
||||||
|
float BoxScoreFast(std::vector<std::vector<float>> box_array, cv::Mat pred) {
|
||||||
|
auto array = box_array;
|
||||||
|
int width = pred.cols;
|
||||||
|
int height = pred.rows;
|
||||||
|
|
||||||
|
float box_x[4] = {array[0][0], array[1][0], array[2][0], array[3][0]};
|
||||||
|
float box_y[4] = {array[0][1], array[1][1], array[2][1], array[3][1]};
|
||||||
|
|
||||||
|
int xmin = clamp(
|
||||||
|
static_cast<int>(std::floorf(*(std::min_element(box_x, box_x + 4)))), 0,
|
||||||
|
width - 1);
|
||||||
|
int xmax =
|
||||||
|
clamp(static_cast<int>(std::ceilf(*(std::max_element(box_x, box_x + 4)))),
|
||||||
|
0, width - 1);
|
||||||
|
int ymin = clamp(
|
||||||
|
static_cast<int>(std::floorf(*(std::min_element(box_y, box_y + 4)))), 0,
|
||||||
|
height - 1);
|
||||||
|
int ymax =
|
||||||
|
clamp(static_cast<int>(std::ceilf(*(std::max_element(box_y, box_y + 4)))),
|
||||||
|
0, height - 1);
|
||||||
|
|
||||||
|
cv::Mat mask;
|
||||||
|
mask = cv::Mat::zeros(ymax - ymin + 1, xmax - xmin + 1, CV_8UC1);
|
||||||
|
|
||||||
|
cv::Point root_point[4];
|
||||||
|
root_point[0] = cv::Point(static_cast<int>(array[0][0]) - xmin,
|
||||||
|
static_cast<int>(array[0][1]) - ymin);
|
||||||
|
root_point[1] = cv::Point(static_cast<int>(array[1][0]) - xmin,
|
||||||
|
static_cast<int>(array[1][1]) - ymin);
|
||||||
|
root_point[2] = cv::Point(static_cast<int>(array[2][0]) - xmin,
|
||||||
|
static_cast<int>(array[2][1]) - ymin);
|
||||||
|
root_point[3] = cv::Point(static_cast<int>(array[3][0]) - xmin,
|
||||||
|
static_cast<int>(array[3][1]) - ymin);
|
||||||
|
const cv::Point *ppt[1] = {root_point};
|
||||||
|
int npt[] = {4};
|
||||||
|
cv::fillPoly(mask, ppt, npt, 1, cv::Scalar(1));
|
||||||
|
|
||||||
|
cv::Mat croppedImg;
|
||||||
|
pred(cv::Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1))
|
||||||
|
.copyTo(croppedImg);
|
||||||
|
|
||||||
|
auto score = cv::mean(croppedImg, mask)[0];
|
||||||
|
return score;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>>
|
||||||
|
BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
|
||||||
|
std::map<std::string, double> Config) {
|
||||||
|
const int min_size = 3;
|
||||||
|
const int max_candidates = 1000;
|
||||||
|
const float box_thresh = static_cast<float>(Config["det_db_box_thresh"]);
|
||||||
|
const float unclip_ratio = static_cast<float>(Config["det_db_unclip_ratio"]);
|
||||||
|
|
||||||
|
int width = bitmap.cols;
|
||||||
|
int height = bitmap.rows;
|
||||||
|
|
||||||
|
std::vector<std::vector<cv::Point>> contours;
|
||||||
|
std::vector<cv::Vec4i> hierarchy;
|
||||||
|
|
||||||
|
cv::findContours(bitmap, contours, hierarchy, cv::RETR_LIST,
|
||||||
|
cv::CHAIN_APPROX_SIMPLE);
|
||||||
|
|
||||||
|
int num_contours =
|
||||||
|
contours.size() >= max_candidates ? max_candidates : contours.size();
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>> boxes;
|
||||||
|
|
||||||
|
for (int i = 0; i < num_contours; i++) {
|
||||||
|
float ssid;
|
||||||
|
if (contours[i].size() <= 2)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
cv::RotatedRect box = cv::minAreaRect(contours[i]);
|
||||||
|
auto array = GetMiniBoxes(box, ssid);
|
||||||
|
|
||||||
|
auto box_for_unclip = array;
|
||||||
|
// end get_mini_box
|
||||||
|
|
||||||
|
if (ssid < min_size) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
float score;
|
||||||
|
score = BoxScoreFast(array, pred);
|
||||||
|
// end box_score_fast
|
||||||
|
if (score < box_thresh)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
// start for unclip
|
||||||
|
cv::RotatedRect points = Unclip(box_for_unclip, unclip_ratio);
|
||||||
|
if (points.size.height < 1.001 && points.size.width < 1.001)
|
||||||
|
continue;
|
||||||
|
// end for unclip
|
||||||
|
|
||||||
|
cv::RotatedRect clipbox = points;
|
||||||
|
auto cliparray = GetMiniBoxes(clipbox, ssid);
|
||||||
|
|
||||||
|
if (ssid < min_size + 2)
|
||||||
|
continue;
|
||||||
|
|
||||||
|
int dest_width = pred.cols;
|
||||||
|
int dest_height = pred.rows;
|
||||||
|
std::vector<std::vector<int>> intcliparray;
|
||||||
|
|
||||||
|
for (int num_pt = 0; num_pt < 4; num_pt++) {
|
||||||
|
std::vector<int> a{
|
||||||
|
static_cast<int>(clamp(
|
||||||
|
roundf(cliparray[num_pt][0] / float(width) * float(dest_width)),
|
||||||
|
float(0), float(dest_width))),
|
||||||
|
static_cast<int>(clamp(
|
||||||
|
roundf(cliparray[num_pt][1] / float(height) * float(dest_height)),
|
||||||
|
float(0), float(dest_height)))};
|
||||||
|
intcliparray.push_back(a);
|
||||||
|
}
|
||||||
|
boxes.push_back(intcliparray);
|
||||||
|
|
||||||
|
} // end for
|
||||||
|
return boxes;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>>
|
||||||
|
FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
|
||||||
|
float ratio_w, cv::Mat srcimg) {
|
||||||
|
int oriimg_h = srcimg.rows;
|
||||||
|
int oriimg_w = srcimg.cols;
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>> root_points;
|
||||||
|
for (int n = 0; n < static_cast<int>(boxes.size()); n++) {
|
||||||
|
boxes[n] = OrderPointsClockwise(boxes[n]);
|
||||||
|
for (int m = 0; m < static_cast<int>(boxes[0].size()); m++) {
|
||||||
|
boxes[n][m][0] /= ratio_w;
|
||||||
|
boxes[n][m][1] /= ratio_h;
|
||||||
|
|
||||||
|
boxes[n][m][0] =
|
||||||
|
static_cast<int>(std::min(std::max(boxes[n][m][0], 0), oriimg_w - 1));
|
||||||
|
boxes[n][m][1] =
|
||||||
|
static_cast<int>(std::min(std::max(boxes[n][m][1], 0), oriimg_h - 1));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int n = 0; n < boxes.size(); n++) {
|
||||||
|
int rect_width, rect_height;
|
||||||
|
rect_width =
|
||||||
|
static_cast<int>(sqrt(pow(boxes[n][0][0] - boxes[n][1][0], 2) +
|
||||||
|
pow(boxes[n][0][1] - boxes[n][1][1], 2)));
|
||||||
|
rect_height =
|
||||||
|
static_cast<int>(sqrt(pow(boxes[n][0][0] - boxes[n][3][0], 2) +
|
||||||
|
pow(boxes[n][0][1] - boxes[n][3][1], 2)));
|
||||||
|
if (rect_width <= 4 || rect_height <= 4)
|
||||||
|
continue;
|
||||||
|
root_points.push_back(boxes[n]);
|
||||||
|
}
|
||||||
|
return root_points;
|
||||||
|
}
|
|
@ -0,0 +1,62 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
#include <iostream>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "clipper.hpp"
|
||||||
|
#include "opencv2/core.hpp"
|
||||||
|
#include "opencv2/imgcodecs.hpp"
|
||||||
|
#include "opencv2/imgproc.hpp"
|
||||||
|
|
||||||
|
template <class T> T clamp(T x, T min, T max) {
|
||||||
|
if (x > max)
|
||||||
|
return max;
|
||||||
|
if (x < min)
|
||||||
|
return min;
|
||||||
|
return x;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> Mat2Vector(cv::Mat mat);
|
||||||
|
|
||||||
|
void GetContourArea(std::vector<std::vector<float>> box, float unclip_ratio,
|
||||||
|
float &distance);
|
||||||
|
|
||||||
|
cv::RotatedRect Unclip(std::vector<std::vector<float>> box, float unclip_ratio);
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> Mat2Vector(cv::Mat mat);
|
||||||
|
|
||||||
|
bool XsortFp32(std::vector<float> a, std::vector<float> b);
|
||||||
|
|
||||||
|
bool XsortInt(std::vector<int> a, std::vector<int> b);
|
||||||
|
|
||||||
|
std::vector<std::vector<int>>
|
||||||
|
OrderPointsClockwise(std::vector<std::vector<int>> pts);
|
||||||
|
|
||||||
|
std::vector<std::vector<float>> GetMiniBoxes(cv::RotatedRect box, float &ssid);
|
||||||
|
|
||||||
|
float BoxScoreFast(std::vector<std::vector<float>> box_array, cv::Mat pred);
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>>
|
||||||
|
BoxesFromBitmap(const cv::Mat pred, const cv::Mat bitmap,
|
||||||
|
std::map<std::string, double> Config);
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>>
|
||||||
|
FilterTagDetRes(std::vector<std::vector<std::vector<int>>> boxes, float ratio_h,
|
||||||
|
float ratio_w, cv::Mat srcimg);
|
|
@ -0,0 +1,409 @@
|
||||||
|
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle_api.h" // NOLINT
|
||||||
|
#include <chrono>
|
||||||
|
|
||||||
|
#include "cls_process.h"
|
||||||
|
#include "crnn_process.h"
|
||||||
|
#include "db_post_process.h"
|
||||||
|
|
||||||
|
using namespace paddle::lite_api; // NOLINT
|
||||||
|
using namespace std;
|
||||||
|
|
||||||
|
// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
|
||||||
|
void NeonMeanScale(const float *din, float *dout, int size,
|
||||||
|
const std::vector<float> mean,
|
||||||
|
const std::vector<float> scale) {
|
||||||
|
if (mean.size() != 3 || scale.size() != 3) {
|
||||||
|
std::cerr << "[ERROR] mean or scale size must equal to 3\n";
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
float32x4_t vmean0 = vdupq_n_f32(mean[0]);
|
||||||
|
float32x4_t vmean1 = vdupq_n_f32(mean[1]);
|
||||||
|
float32x4_t vmean2 = vdupq_n_f32(mean[2]);
|
||||||
|
float32x4_t vscale0 = vdupq_n_f32(scale[0]);
|
||||||
|
float32x4_t vscale1 = vdupq_n_f32(scale[1]);
|
||||||
|
float32x4_t vscale2 = vdupq_n_f32(scale[2]);
|
||||||
|
|
||||||
|
float *dout_c0 = dout;
|
||||||
|
float *dout_c1 = dout + size;
|
||||||
|
float *dout_c2 = dout + size * 2;
|
||||||
|
|
||||||
|
int i = 0;
|
||||||
|
for (; i < size - 3; i += 4) {
|
||||||
|
float32x4x3_t vin3 = vld3q_f32(din);
|
||||||
|
float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
|
||||||
|
float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
|
||||||
|
float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
|
||||||
|
float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
|
||||||
|
float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
|
||||||
|
float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
|
||||||
|
vst1q_f32(dout_c0, vs0);
|
||||||
|
vst1q_f32(dout_c1, vs1);
|
||||||
|
vst1q_f32(dout_c2, vs2);
|
||||||
|
|
||||||
|
din += 12;
|
||||||
|
dout_c0 += 4;
|
||||||
|
dout_c1 += 4;
|
||||||
|
dout_c2 += 4;
|
||||||
|
}
|
||||||
|
for (; i < size; i++) {
|
||||||
|
*(dout_c0++) = (*(din++) - mean[0]) * scale[0];
|
||||||
|
*(dout_c1++) = (*(din++) - mean[1]) * scale[1];
|
||||||
|
*(dout_c2++) = (*(din++) - mean[2]) * scale[2];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// resize image to a size multiple of 32 which is required by the network
|
||||||
|
cv::Mat DetResizeImg(const cv::Mat img, int max_size_len,
|
||||||
|
std::vector<float> &ratio_hw) {
|
||||||
|
int w = img.cols;
|
||||||
|
int h = img.rows;
|
||||||
|
|
||||||
|
float ratio = 1.f;
|
||||||
|
int max_wh = w >= h ? w : h;
|
||||||
|
if (max_wh > max_size_len) {
|
||||||
|
if (h > w) {
|
||||||
|
ratio = static_cast<float>(max_size_len) / static_cast<float>(h);
|
||||||
|
} else {
|
||||||
|
ratio = static_cast<float>(max_size_len) / static_cast<float>(w);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
int resize_h = static_cast<int>(float(h) * ratio);
|
||||||
|
int resize_w = static_cast<int>(float(w) * ratio);
|
||||||
|
if (resize_h % 32 == 0)
|
||||||
|
resize_h = resize_h;
|
||||||
|
else if (resize_h / 32 < 1 + 1e-5)
|
||||||
|
resize_h = 32;
|
||||||
|
else
|
||||||
|
resize_h = (resize_h / 32 - 1) * 32;
|
||||||
|
|
||||||
|
if (resize_w % 32 == 0)
|
||||||
|
resize_w = resize_w;
|
||||||
|
else if (resize_w / 32 < 1 + 1e-5)
|
||||||
|
resize_w = 32;
|
||||||
|
else
|
||||||
|
resize_w = (resize_w / 32 - 1) * 32;
|
||||||
|
|
||||||
|
cv::Mat resize_img;
|
||||||
|
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||||
|
|
||||||
|
ratio_hw.push_back(static_cast<float>(resize_h) / static_cast<float>(h));
|
||||||
|
ratio_hw.push_back(static_cast<float>(resize_w) / static_cast<float>(w));
|
||||||
|
return resize_img;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat RunClsModel(cv::Mat img, std::shared_ptr<PaddlePredictor> predictor_cls,
|
||||||
|
const float thresh = 0.9) {
|
||||||
|
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
|
||||||
|
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
|
||||||
|
|
||||||
|
cv::Mat srcimg;
|
||||||
|
img.copyTo(srcimg);
|
||||||
|
cv::Mat crop_img;
|
||||||
|
img.copyTo(crop_img);
|
||||||
|
cv::Mat resize_img;
|
||||||
|
|
||||||
|
int index = 0;
|
||||||
|
float wh_ratio =
|
||||||
|
static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
|
||||||
|
|
||||||
|
resize_img = ClsResizeImg(crop_img);
|
||||||
|
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
|
||||||
|
|
||||||
|
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
|
||||||
|
|
||||||
|
std::unique_ptr<Tensor> input_tensor0(std::move(predictor_cls->GetInput(0)));
|
||||||
|
input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
|
||||||
|
auto *data0 = input_tensor0->mutable_data<float>();
|
||||||
|
|
||||||
|
NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
|
||||||
|
// Run CLS predictor
|
||||||
|
predictor_cls->Run();
|
||||||
|
|
||||||
|
// Get output and run postprocess
|
||||||
|
std::unique_ptr<const Tensor> softmax_out(
|
||||||
|
std::move(predictor_cls->GetOutput(0)));
|
||||||
|
auto *softmax_scores = softmax_out->mutable_data<float>();
|
||||||
|
auto softmax_out_shape = softmax_out->shape();
|
||||||
|
float score = 0;
|
||||||
|
int label = 0;
|
||||||
|
for (int i = 0; i < softmax_out_shape[1]; i++) {
|
||||||
|
if (softmax_scores[i] > score) {
|
||||||
|
score = softmax_scores[i];
|
||||||
|
label = i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (label % 2 == 1 && score > thresh) {
|
||||||
|
cv::rotate(srcimg, srcimg, 1);
|
||||||
|
}
|
||||||
|
return srcimg;
|
||||||
|
}
|
||||||
|
|
||||||
|
void RunRecModel(std::vector<std::vector<std::vector<int>>> boxes, cv::Mat img,
|
||||||
|
std::shared_ptr<PaddlePredictor> predictor_crnn,
|
||||||
|
std::vector<std::string> &rec_text,
|
||||||
|
std::vector<float> &rec_text_score,
|
||||||
|
std::vector<std::string> charactor_dict,
|
||||||
|
std::shared_ptr<PaddlePredictor> predictor_cls,
|
||||||
|
int use_direction_classify) {
|
||||||
|
std::vector<float> mean = {0.5f, 0.5f, 0.5f};
|
||||||
|
std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};
|
||||||
|
|
||||||
|
cv::Mat srcimg;
|
||||||
|
img.copyTo(srcimg);
|
||||||
|
cv::Mat crop_img;
|
||||||
|
cv::Mat resize_img;
|
||||||
|
|
||||||
|
int index = 0;
|
||||||
|
for (int i = boxes.size() - 1; i >= 0; i--) {
|
||||||
|
crop_img = GetRotateCropImage(srcimg, boxes[i]);
|
||||||
|
if (use_direction_classify >= 1) {
|
||||||
|
crop_img = RunClsModel(crop_img, predictor_cls);
|
||||||
|
}
|
||||||
|
float wh_ratio =
|
||||||
|
static_cast<float>(crop_img.cols) / static_cast<float>(crop_img.rows);
|
||||||
|
|
||||||
|
resize_img = CrnnResizeImg(crop_img, wh_ratio);
|
||||||
|
resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);
|
||||||
|
|
||||||
|
const float *dimg = reinterpret_cast<const float *>(resize_img.data);
|
||||||
|
|
||||||
|
std::unique_ptr<Tensor> input_tensor0(
|
||||||
|
std::move(predictor_crnn->GetInput(0)));
|
||||||
|
input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
|
||||||
|
auto *data0 = input_tensor0->mutable_data<float>();
|
||||||
|
|
||||||
|
NeonMeanScale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);
|
||||||
|
//// Run CRNN predictor
|
||||||
|
predictor_crnn->Run();
|
||||||
|
|
||||||
|
// Get output and run postprocess
|
||||||
|
std::unique_ptr<const Tensor> output_tensor0(
|
||||||
|
std::move(predictor_crnn->GetOutput(0)));
|
||||||
|
auto *predict_batch = output_tensor0->data<float>();
|
||||||
|
auto predict_shape = output_tensor0->shape();
|
||||||
|
|
||||||
|
// ctc decode
|
||||||
|
std::string str_res;
|
||||||
|
int argmax_idx;
|
||||||
|
int last_index = 0;
|
||||||
|
float score = 0.f;
|
||||||
|
int count = 0;
|
||||||
|
float max_value = 0.0f;
|
||||||
|
|
||||||
|
for (int n = 0; n < predict_shape[1]; n++) {
|
||||||
|
argmax_idx = int(Argmax(&predict_batch[n * predict_shape[2]],
|
||||||
|
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||||
|
max_value =
|
||||||
|
float(*std::max_element(&predict_batch[n * predict_shape[2]],
|
||||||
|
&predict_batch[(n + 1) * predict_shape[2]]));
|
||||||
|
if (argmax_idx > 0 && (!(i > 0 && argmax_idx == last_index))) {
|
||||||
|
score += max_value;
|
||||||
|
count += 1;
|
||||||
|
str_res += charactor_dict[argmax_idx];
|
||||||
|
}
|
||||||
|
last_index = argmax_idx;
|
||||||
|
}
|
||||||
|
score /= count;
|
||||||
|
rec_text.push_back(str_res);
|
||||||
|
rec_text_score.push_back(score);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>>
|
||||||
|
RunDetModel(std::shared_ptr<PaddlePredictor> predictor, cv::Mat img,
|
||||||
|
std::map<std::string, double> Config) {
|
||||||
|
// Read img
|
||||||
|
int max_side_len = int(Config["max_side_len"]);
|
||||||
|
|
||||||
|
cv::Mat srcimg;
|
||||||
|
img.copyTo(srcimg);
|
||||||
|
|
||||||
|
std::vector<float> ratio_hw;
|
||||||
|
img = DetResizeImg(img, max_side_len, ratio_hw);
|
||||||
|
cv::Mat img_fp;
|
||||||
|
img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);
|
||||||
|
|
||||||
|
// Prepare input data from image
|
||||||
|
std::unique_ptr<Tensor> input_tensor0(std::move(predictor->GetInput(0)));
|
||||||
|
input_tensor0->Resize({1, 3, img_fp.rows, img_fp.cols});
|
||||||
|
auto *data0 = input_tensor0->mutable_data<float>();
|
||||||
|
|
||||||
|
std::vector<float> mean = {0.485f, 0.456f, 0.406f};
|
||||||
|
std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
|
||||||
|
const float *dimg = reinterpret_cast<const float *>(img_fp.data);
|
||||||
|
NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
|
||||||
|
|
||||||
|
// Run predictor
|
||||||
|
predictor->Run();
|
||||||
|
|
||||||
|
// Get output and post process
|
||||||
|
std::unique_ptr<const Tensor> output_tensor(
|
||||||
|
std::move(predictor->GetOutput(0)));
|
||||||
|
auto *outptr = output_tensor->data<float>();
|
||||||
|
auto shape_out = output_tensor->shape();
|
||||||
|
|
||||||
|
// Save output
|
||||||
|
float pred[shape_out[2] * shape_out[3]];
|
||||||
|
unsigned char cbuf[shape_out[2] * shape_out[3]];
|
||||||
|
|
||||||
|
for (int i = 0; i < int(shape_out[2] * shape_out[3]); i++) {
|
||||||
|
pred[i] = static_cast<float>(outptr[i]);
|
||||||
|
cbuf[i] = static_cast<unsigned char>((outptr[i]) * 255);
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat cbuf_map(shape_out[2], shape_out[3], CV_8UC1,
|
||||||
|
reinterpret_cast<unsigned char *>(cbuf));
|
||||||
|
cv::Mat pred_map(shape_out[2], shape_out[3], CV_32F,
|
||||||
|
reinterpret_cast<float *>(pred));
|
||||||
|
|
||||||
|
const double threshold = double(Config["det_db_thresh"]) * 255;
|
||||||
|
const double maxvalue = 255;
|
||||||
|
cv::Mat bit_map;
|
||||||
|
cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
|
||||||
|
cv::Mat dilation_map;
|
||||||
|
cv::Mat dila_ele = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
|
||||||
|
cv::dilate(bit_map, dilation_map, dila_ele);
|
||||||
|
auto boxes = BoxesFromBitmap(pred_map, dilation_map, Config);
|
||||||
|
|
||||||
|
std::vector<std::vector<std::vector<int>>> filter_boxes =
|
||||||
|
FilterTagDetRes(boxes, ratio_hw[0], ratio_hw[1], srcimg);
|
||||||
|
|
||||||
|
return filter_boxes;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::shared_ptr<PaddlePredictor> loadModel(std::string model_file) {
|
||||||
|
MobileConfig config;
|
||||||
|
config.set_model_from_file(model_file);
|
||||||
|
|
||||||
|
std::shared_ptr<PaddlePredictor> predictor =
|
||||||
|
CreatePaddlePredictor<MobileConfig>(config);
|
||||||
|
return predictor;
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::Mat Visualization(cv::Mat srcimg,
|
||||||
|
std::vector<std::vector<std::vector<int>>> boxes) {
|
||||||
|
cv::Point rook_points[boxes.size()][4];
|
||||||
|
for (int n = 0; n < boxes.size(); n++) {
|
||||||
|
for (int m = 0; m < boxes[0].size(); m++) {
|
||||||
|
rook_points[n][m] = cv::Point(static_cast<int>(boxes[n][m][0]),
|
||||||
|
static_cast<int>(boxes[n][m][1]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
cv::Mat img_vis;
|
||||||
|
srcimg.copyTo(img_vis);
|
||||||
|
for (int n = 0; n < boxes.size(); n++) {
|
||||||
|
const cv::Point *ppt[1] = {rook_points[n]};
|
||||||
|
int npt[] = {4};
|
||||||
|
cv::polylines(img_vis, ppt, npt, 1, 1, CV_RGB(0, 255, 0), 2, 8, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
cv::imwrite("./vis.jpg", img_vis);
|
||||||
|
std::cout << "The detection visualized image saved in ./vis.jpg" << std::endl;
|
||||||
|
return img_vis;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> split(const std::string &str,
|
||||||
|
const std::string &delim) {
|
||||||
|
std::vector<std::string> res;
|
||||||
|
if ("" == str)
|
||||||
|
return res;
|
||||||
|
char *strs = new char[str.length() + 1];
|
||||||
|
std::strcpy(strs, str.c_str());
|
||||||
|
|
||||||
|
char *d = new char[delim.length() + 1];
|
||||||
|
std::strcpy(d, delim.c_str());
|
||||||
|
|
||||||
|
char *p = std::strtok(strs, d);
|
||||||
|
while (p) {
|
||||||
|
string s = p;
|
||||||
|
res.push_back(s);
|
||||||
|
p = std::strtok(NULL, d);
|
||||||
|
}
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<std::string, double> LoadConfigTxt(std::string config_path) {
|
||||||
|
auto config = ReadDict(config_path);
|
||||||
|
|
||||||
|
std::map<std::string, double> dict;
|
||||||
|
for (int i = 0; i < config.size(); i++) {
|
||||||
|
std::vector<std::string> res = split(config[i], " ");
|
||||||
|
dict[res[0]] = stod(res[1]);
|
||||||
|
}
|
||||||
|
return dict;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
if (argc < 5) {
|
||||||
|
std::cerr << "[ERROR] usage: " << argv[0]
|
||||||
|
<< " det_model_file cls_model_file rec_model_file image_path "
|
||||||
|
"charactor_dict\n";
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
std::string det_model_file = argv[1];
|
||||||
|
std::string rec_model_file = argv[2];
|
||||||
|
std::string cls_model_file = argv[3];
|
||||||
|
std::string img_path = argv[4];
|
||||||
|
std::string dict_path = argv[5];
|
||||||
|
|
||||||
|
//// load config from txt file
|
||||||
|
auto Config = LoadConfigTxt("./config.txt");
|
||||||
|
int use_direction_classify = int(Config["use_direction_classify"]);
|
||||||
|
|
||||||
|
auto start = std::chrono::system_clock::now();
|
||||||
|
|
||||||
|
auto det_predictor = loadModel(det_model_file);
|
||||||
|
auto rec_predictor = loadModel(rec_model_file);
|
||||||
|
auto cls_predictor = loadModel(cls_model_file);
|
||||||
|
|
||||||
|
auto charactor_dict = ReadDict(dict_path);
|
||||||
|
charactor_dict.insert(charactor_dict.begin(), "#"); // blank char for ctc
|
||||||
|
charactor_dict.push_back(" ");
|
||||||
|
std:
|
||||||
|
cout << charactor_dict[0] << " " << charactor_dict[1] << std::endl;
|
||||||
|
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
|
||||||
|
auto boxes = RunDetModel(det_predictor, srcimg, Config);
|
||||||
|
|
||||||
|
std::vector<std::string> rec_text;
|
||||||
|
std::vector<float> rec_text_score;
|
||||||
|
|
||||||
|
RunRecModel(boxes, srcimg, rec_predictor, rec_text, rec_text_score,
|
||||||
|
charactor_dict, cls_predictor, use_direction_classify);
|
||||||
|
|
||||||
|
auto end = std::chrono::system_clock::now();
|
||||||
|
auto duration =
|
||||||
|
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||||
|
|
||||||
|
//// visualization
|
||||||
|
auto img_vis = Visualization(srcimg, boxes);
|
||||||
|
|
||||||
|
//// print recognized text
|
||||||
|
for (int i = 0; i < rec_text.size(); i++) {
|
||||||
|
std::cout << i << "\t" << rec_text[i] << "\t" << rec_text_score[i]
|
||||||
|
<< std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::cout << "花费了"
|
||||||
|
<< double(duration.count()) *
|
||||||
|
std::chrono::microseconds::period::num /
|
||||||
|
std::chrono::microseconds::period::den
|
||||||
|
<< "秒" << std::endl;
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -0,0 +1,9 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
mkdir -p $1/demo/cxx/ocr/debug/
|
||||||
|
cp ../../ppocr/utils/ppocr_keys_v1.txt $1/demo/cxx/ocr/debug/
|
||||||
|
cp -r ./* $1/demo/cxx/ocr/
|
||||||
|
cp ./config.txt $1/demo/cxx/ocr/debug/
|
||||||
|
cp ../../doc/imgs/11.jpg $1/demo/cxx/ocr/debug/
|
||||||
|
|
||||||
|
echo "Prepare Done"
|
|
@ -0,0 +1,269 @@
|
||||||
|
# 端侧部署
|
||||||
|
|
||||||
|
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleOCR超轻量中文检测、识别模型的详细步骤。
|
||||||
|
|
||||||
|
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。
|
||||||
|
|
||||||
|
|
||||||
|
## 1. 准备环境
|
||||||
|
|
||||||
|
### 运行准备
|
||||||
|
- 电脑(编译Paddle Lite)
|
||||||
|
- 安卓手机(armv7或armv8)
|
||||||
|
|
||||||
|
***注意: PaddleOCR 移动端部署当前不支持动态图模型,只支持静态图保存的模型。当前PaddleOCR静态图的分支是`develop`。***
|
||||||
|
|
||||||
|
### 1.1 准备交叉编译环境
|
||||||
|
交叉编译环境用于编译 Paddle Lite 和 PaddleOCR 的C++ demo。
|
||||||
|
支持多种开发环境,不同开发环境的编译流程请参考对应文档。
|
||||||
|
|
||||||
|
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
|
||||||
|
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
|
||||||
|
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)
|
||||||
|
|
||||||
|
### 1.2 准备预测库
|
||||||
|
|
||||||
|
预测库有两种获取方式:
|
||||||
|
- 1. 直接下载,预测库下载链接如下:
|
||||||
|
|
||||||
|
| 平台 | 预测库下载链接 |
|
||||||
|
|---|---|
|
||||||
|
|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)|
|
||||||
|
|IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)|
|
||||||
|
|
||||||
|
注:1. 上述预测库为PaddleLite 2.8分支编译得到,有关PaddleLite 2.8 详细信息可参考[链接](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.8)。
|
||||||
|
|
||||||
|
- 2. [推荐]编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下:
|
||||||
|
```
|
||||||
|
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
||||||
|
cd Paddle-Lite
|
||||||
|
# 切换到Paddle-Lite release/v2.8 稳定分支
|
||||||
|
git checkout release/v2.8
|
||||||
|
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
|
||||||
|
```
|
||||||
|
|
||||||
|
注意:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,
|
||||||
|
更多编译命令
|
||||||
|
介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。
|
||||||
|
|
||||||
|
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于
|
||||||
|
`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
|
||||||
|
预测库的文件目录如下:
|
||||||
|
```
|
||||||
|
inference_lite_lib.android.armv8/
|
||||||
|
|-- cxx C++ 预测库和头文件
|
||||||
|
| |-- include C++ 头文件
|
||||||
|
| | |-- paddle_api.h
|
||||||
|
| | |-- paddle_image_preprocess.h
|
||||||
|
| | |-- paddle_lite_factory_helper.h
|
||||||
|
| | |-- paddle_place.h
|
||||||
|
| | |-- paddle_use_kernels.h
|
||||||
|
| | |-- paddle_use_ops.h
|
||||||
|
| | `-- paddle_use_passes.h
|
||||||
|
| `-- lib C++预测库
|
||||||
|
| |-- libpaddle_api_light_bundled.a C++静态库
|
||||||
|
| `-- libpaddle_light_api_shared.so C++动态库
|
||||||
|
|-- java Java预测库
|
||||||
|
| |-- jar
|
||||||
|
| | `-- PaddlePredictor.jar
|
||||||
|
| |-- so
|
||||||
|
| | `-- libpaddle_lite_jni.so
|
||||||
|
| `-- src
|
||||||
|
|-- demo C++和Java示例代码
|
||||||
|
| |-- cxx C++ 预测库demo
|
||||||
|
| `-- java Java 预测库demo
|
||||||
|
```
|
||||||
|
|
||||||
|
## 2 开始运行
|
||||||
|
|
||||||
|
### 2.1 模型优化
|
||||||
|
|
||||||
|
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合调度、Kernel优选等方法,使用Paddle-lite的opt工具可以自动
|
||||||
|
对inference模型进行优化,优化后的模型更轻量,模型运行速度更快。
|
||||||
|
|
||||||
|
如果已经准备好了 `.nb` 结尾的模型文件,可以跳过此步骤。
|
||||||
|
|
||||||
|
下述表格中也提供了一系列中文移动端模型:
|
||||||
|
|
||||||
|
|模型版本|模型简介|模型大小|检测模型|文本方向分类模型|识别模型|Paddle-Lite版本|
|
||||||
|
|---|---|---|---|---|---|---|
|
||||||
|
|V2.0|超轻量中文OCR 移动端模型|8.1M|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_opt.nb)|v2.8|
|
||||||
|
|V2.0(slim)|超轻量中文OCR 移动端模型|3.5M|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb)|[下载地址](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb)|v2.8|
|
||||||
|
|
||||||
|
注意:V2.0 3.0M 轻量模型是使用PaddleSlim优化后的,需要配合Paddle-Lite最新预测库使用。
|
||||||
|
|
||||||
|
如果直接使用上述表格中的模型进行部署,可略过下述步骤,直接阅读 [2.2节](#2.2与手机联调)。
|
||||||
|
|
||||||
|
如果要部署的模型不在上述表格中,则需要按照如下步骤获得优化后的模型。
|
||||||
|
|
||||||
|
模型优化需要Paddle-Lite的opt可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下:
|
||||||
|
```
|
||||||
|
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
|
||||||
|
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
||||||
|
cd Paddle-Lite
|
||||||
|
git checkout release/v2.8
|
||||||
|
# 启动编译
|
||||||
|
./lite/tools/build.sh build_optimize_tool
|
||||||
|
```
|
||||||
|
|
||||||
|
编译完成后,opt文件位于`build.opt/lite/api/`下,可通过如下方式查看opt的运行选项和使用方式;
|
||||||
|
```
|
||||||
|
cd build.opt/lite/api/
|
||||||
|
./opt
|
||||||
|
```
|
||||||
|
|
||||||
|
|选项|说明|
|
||||||
|
|---|---|
|
||||||
|
|--model_dir|待优化的PaddlePaddle模型(非combined形式)的路径|
|
||||||
|
|--model_file|待优化的PaddlePaddle模型(combined形式)的网络结构文件路径|
|
||||||
|
|--param_file|待优化的PaddlePaddle模型(combined形式)的权重文件路径|
|
||||||
|
|--optimize_out_type|输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf|
|
||||||
|
|--optimize_out|优化模型的输出路径|
|
||||||
|
|--valid_targets|指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm|
|
||||||
|
|--record_tailoring_info|当使用 根据模型裁剪库文件 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false|
|
||||||
|
|
||||||
|
`--model_dir`适用于待优化的模型是非combined方式,PaddleOCR的inference模型是combined方式,即模型结构和模型参数使用单独一个文件存储。
|
||||||
|
|
||||||
|
下面以PaddleOCR的超轻量中文模型为例,介绍使用编译好的opt文件完成inference模型到Paddle-Lite优化模型的转换。
|
||||||
|
|
||||||
|
```
|
||||||
|
# 【推荐】 下载PaddleOCR V2.0版本的中英文 inference模型
|
||||||
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_slim_infer.tar && tar xf ch_ppocr_mobile_v1.1_det_prune_infer.tar
|
||||||
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_slim_infer.tar && tar xf ch_ppocr_mobile_v1.1_rec_quant_infer.tar
|
||||||
|
# 转换V2.0检测模型
|
||||||
|
./opt --model_file=./ch_ppocr_mobile_v1.1_det_prune_infer/model --param_file=./ch_ppocr_mobile_v1.1_det_prune_infer/params --optimize_out=./ch_ppocr_mobile_v1.1_det_prune_opt --valid_targets=arm --optimize_out_type=naive_buffer
|
||||||
|
# 转换V2.0识别模型
|
||||||
|
./opt --model_file=./ch_ppocr_mobile_v1.1_rec_quant_infer/model --param_file=./ch_ppocr_mobile_v1.1_rec_quant_infer/params --optimize_out=./ch_ppocr_mobile_v1.1_rec_quant_opt --valid_targets=arm --optimize_out_type=naive_buffer
|
||||||
|
```
|
||||||
|
|
||||||
|
转换成功后,当前目录下会多出`.nb`结尾的文件,即是转换成功的模型文件。
|
||||||
|
|
||||||
|
注意:使用paddle-lite部署时,需要使用opt工具优化后的模型。 opt 工具的输入模型是paddle保存的inference模型
|
||||||
|
|
||||||
|
<a name="2.2与手机联调"></a>
|
||||||
|
### 2.2 与手机联调
|
||||||
|
|
||||||
|
首先需要进行一些准备工作。
|
||||||
|
1. 准备一台arm8的安卓手机,如果编译的预测库和opt文件是armv7,则需要arm7的手机,并修改Makefile中`ARM_ABI = arm7`。
|
||||||
|
2. 打开手机的USB调试选项,选择文件传输模式,连接电脑。
|
||||||
|
3. 电脑上安装adb工具,用于调试。 adb安装方式如下:
|
||||||
|
|
||||||
|
3.1. MAC电脑安装ADB:
|
||||||
|
```
|
||||||
|
brew cask install android-platform-tools
|
||||||
|
```
|
||||||
|
3.2. Linux安装ADB
|
||||||
|
```
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y wget adb
|
||||||
|
```
|
||||||
|
3.3. Window安装ADB
|
||||||
|
|
||||||
|
win上安装需要去谷歌的安卓平台下载adb软件包进行安装:[链接](https://developer.android.com/studio)
|
||||||
|
|
||||||
|
打开终端,手机连接电脑,在终端中输入
|
||||||
|
```
|
||||||
|
adb devices
|
||||||
|
```
|
||||||
|
如果有device输出,则表示安装成功。
|
||||||
|
```
|
||||||
|
List of devices attached
|
||||||
|
744be294 device
|
||||||
|
```
|
||||||
|
|
||||||
|
4. 准备优化后的模型、预测库文件、测试图像和使用的字典文件。
|
||||||
|
```
|
||||||
|
git clone https://github.com/PaddlePaddle/PaddleOCR.git
|
||||||
|
cd PaddleOCR/deploy/lite/
|
||||||
|
# 运行prepare.sh,准备预测库文件、测试图像和使用的字典文件,并放置在预测库中的demo/cxx/ocr文件夹下
|
||||||
|
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
|
||||||
|
|
||||||
|
# 进入OCR demo的工作目录
|
||||||
|
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
|
||||||
|
cd demo/cxx/ocr/
|
||||||
|
# 将C++预测动态库so文件复制到debug文件夹中
|
||||||
|
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
|
||||||
|
```
|
||||||
|
|
||||||
|
准备测试图像,以`PaddleOCR/doc/imgs/11.jpg`为例,将测试的图像复制到`demo/cxx/ocr/debug/`文件夹下。
|
||||||
|
准备lite opt工具优化后的模型文件,比如使用`ch_ppocr_mobile_v1.1_det_prune_opt.nb,ch_ppocr_mobile_v1.1_rec_quant_opt.nb, ch_ppocr_mobile_cls_quant_opt.nb`,模型文件放置在`demo/cxx/ocr/debug/`文件夹下。
|
||||||
|
|
||||||
|
执行完成后,ocr文件夹下将有如下文件格式:
|
||||||
|
|
||||||
|
```
|
||||||
|
demo/cxx/ocr/
|
||||||
|
|-- debug/
|
||||||
|
| |--ch_ppocr_mobile_v1.1_det_prune_opt.nb 优化后的检测模型文件
|
||||||
|
| |--ch_ppocr_mobile_v1.1_rec_quant_opt.nb 优化后的识别模型文件
|
||||||
|
| |--ch_ppocr_mobile_cls_quant_opt.nb 优化后的文字方向分类器模型文件
|
||||||
|
| |--11.jpg 待测试图像
|
||||||
|
| |--ppocr_keys_v1.txt 中文字典文件
|
||||||
|
| |--libpaddle_light_api_shared.so C++预测库文件
|
||||||
|
| |--config.txt DB-CRNN超参数配置
|
||||||
|
|-- config.txt DB-CRNN超参数配置
|
||||||
|
|-- crnn_process.cc 识别模型CRNN的预处理和后处理文件
|
||||||
|
|-- crnn_process.h
|
||||||
|
|-- db_post_process.cc 检测模型DB的后处理文件
|
||||||
|
|-- db_post_process.h
|
||||||
|
|-- Makefile 编译文件
|
||||||
|
|-- ocr_db_crnn.cc C++预测源文件
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 注意:
|
||||||
|
1. ppocr_keys_v1.txt是中文字典文件,如果使用的 nb 模型是英文数字或其他语言的模型,需要更换为对应语言的字典。
|
||||||
|
PaddleOCR 在ppocr/utils/下存放了多种字典,包括:
|
||||||
|
```
|
||||||
|
dict/french_dict.txt # 法语字典
|
||||||
|
dict/german_dict.txt # 德语字典
|
||||||
|
ic15_dict.txt # 英文字典
|
||||||
|
dict/japan_dict.txt # 日语字典
|
||||||
|
dict/korean_dict.txt # 韩语字典
|
||||||
|
ppocr_keys_v1.txt # 中文字典
|
||||||
|
```
|
||||||
|
|
||||||
|
2. `config.txt` 包含了检测器、分类器的超参数,如下:
|
||||||
|
```
|
||||||
|
max_side_len 960 # 输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960
|
||||||
|
det_db_thresh 0.3 # 用于过滤DB预测的二值化图像,设置为0.-0.3对结果影响不明显
|
||||||
|
det_db_box_thresh 0.5 # DB后处理过滤box的阈值,如果检测存在漏框情况,可酌情减小
|
||||||
|
det_db_unclip_ratio 1.6 # 表示文本框的紧致程度,越小则文本框更靠近文本
|
||||||
|
use_direction_classify 0 # 是否使用方向分类器,0表示不使用,1表示使用
|
||||||
|
```
|
||||||
|
|
||||||
|
5. 启动调试
|
||||||
|
|
||||||
|
上述步骤完成后就可以使用adb将文件push到手机上运行,步骤如下:
|
||||||
|
|
||||||
|
```
|
||||||
|
# 执行编译,得到可执行文件ocr_db_crnn
|
||||||
|
# ocr_db_crnn可执行文件的使用方式为:
|
||||||
|
# ./ocr_db_crnn 检测模型文件 方向分类器模型文件 识别模型文件 测试图像路径 字典文件路径
|
||||||
|
make -j
|
||||||
|
# 将编译的可执行文件移动到debug文件夹中
|
||||||
|
mv ocr_db_crnn ./debug/
|
||||||
|
# 将debug文件夹push到手机上
|
||||||
|
adb push debug /data/local/tmp/
|
||||||
|
adb shell
|
||||||
|
cd /data/local/tmp/debug
|
||||||
|
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
|
||||||
|
./ocr_db_crnn ch_ppocr_mobile_v1.1_det_prune_opt.nb ch_ppocr_mobile_v1.1_rec_quant_opt.nb ch_ppocr_mobile_cls_quant_opt.nb ./11.jpg ppocr_keys_v1.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
如果对代码做了修改,则需要重新编译并push到手机上。
|
||||||
|
|
||||||
|
运行效果如下:
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<img src="../imgs_results/lite_demo.png" width="600">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
|
||||||
|
## FAQ
|
||||||
|
Q1:如果想更换模型怎么办,需要重新按照流程走一遍吗?
|
||||||
|
A1:如果已经走通了上述步骤,更换模型只需要替换 .nb 模型文件即可,同时要注意字典更新
|
||||||
|
|
||||||
|
Q2:换一个图测试怎么做?
|
||||||
|
A2:替换debug下的.jpg测试图像为你想要测试的图像,adb push 到手机上即可
|
||||||
|
|
||||||
|
Q3:如何封装到手机APP中?
|
||||||
|
A3:此demo旨在提供能在手机上运行OCR的核心算法部分,PaddleOCR/deploy/android_demo是将这个demo封装到手机app的示例,供参考
|
|
@ -0,0 +1,246 @@
|
||||||
|
|
||||||
|
# Tutorial of PaddleOCR Mobile deployment
|
||||||
|
|
||||||
|
This tutorial will introduce how to use [paddle-lite](https://github.com/PaddlePaddle/Paddle-Lite) to deploy paddleOCR ultra-lightweight Chinese and English detection models on mobile phones.
|
||||||
|
|
||||||
|
paddle-lite is a lightweight inference engine for PaddlePaddle.
|
||||||
|
It provides efficient inference capabilities for mobile phones and IoTs,
|
||||||
|
and extensively integrates cross-platform hardware to provide lightweight
|
||||||
|
deployment solutions for end-side deployment issues.
|
||||||
|
|
||||||
|
## 1. Preparation
|
||||||
|
|
||||||
|
- Computer (for Compiling Paddle Lite)
|
||||||
|
- Mobile phone (arm7 or arm8)
|
||||||
|
|
||||||
|
***Note: PaddleOCR lite deployment currently does not support dynamic graph models, only models saved with static graph. The static branch of PaddleOCR is `develop`.***
|
||||||
|
|
||||||
|
## 2. Build PaddleLite library
|
||||||
|
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
|
||||||
|
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
|
||||||
|
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)
|
||||||
|
|
||||||
|
## 3. Prepare prebuild library for android and ios
|
||||||
|
|
||||||
|
### 3.1 Download prebuild library
|
||||||
|
|Platform|Prebuild library Download Link|
|
||||||
|
|---|---|
|
||||||
|
|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.android.armv7.gcc.c++_shared.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz)|
|
||||||
|
|IOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.ios.armv7.with_cv.with_extra.with_log.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.8/inference_lite_lib.ios.armv8.with_cv.with_extra.with_log.tiny_publish.tar.gz)|
|
||||||
|
|
||||||
|
note: The above pre-build inference library is compiled from the PaddleLite `release/v2.8` branch. For more information about PaddleLite 2.8, please refer to [link](https://github.com/PaddlePaddle/Paddle-Lite/releases/tag/v2.8).
|
||||||
|
|
||||||
|
### 3.2 Compile prebuild library (Recommended)
|
||||||
|
```
|
||||||
|
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
||||||
|
cd Paddle-Lite
|
||||||
|
# checkout to Paddle-Lite release/v2.8 branch
|
||||||
|
git checkout release/v2.8
|
||||||
|
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
|
||||||
|
```
|
||||||
|
|
||||||
|
The structure of the prediction library is as follows:
|
||||||
|
|
||||||
|
```
|
||||||
|
inference_lite_lib.android.armv8/
|
||||||
|
|-- cxx C++ prebuild library
|
||||||
|
| |-- include C++
|
||||||
|
| | |-- paddle_api.h
|
||||||
|
| | |-- paddle_image_preprocess.h
|
||||||
|
| | |-- paddle_lite_factory_helper.h
|
||||||
|
| | |-- paddle_place.h
|
||||||
|
| | |-- paddle_use_kernels.h
|
||||||
|
| | |-- paddle_use_ops.h
|
||||||
|
| | `-- paddle_use_passes.h
|
||||||
|
| `-- lib
|
||||||
|
| |-- libpaddle_api_light_bundled.a C++ static library
|
||||||
|
| `-- libpaddle_light_api_shared.so C++ dynamic library
|
||||||
|
|-- java Java predict library
|
||||||
|
| |-- jar
|
||||||
|
| | `-- PaddlePredictor.jar
|
||||||
|
| |-- so
|
||||||
|
| | `-- libpaddle_lite_jni.so
|
||||||
|
| `-- src
|
||||||
|
|-- demo C++ and java demo
|
||||||
|
| |-- cxx
|
||||||
|
| `-- java
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## 4. Inference Model Optimization
|
||||||
|
|
||||||
|
Paddle Lite provides a variety of strategies to automatically optimize the original training model, including quantization, sub-graph fusion, hybrid scheduling, Kernel optimization and so on. In order to make the optimization process more convenient and easy to use, Paddle Lite provide opt tools to automatically complete the optimization steps and output a lightweight, optimal executable model.
|
||||||
|
|
||||||
|
If you have prepared the model file ending in `.nb`, you can skip this step.
|
||||||
|
|
||||||
|
The following table also provides a series of models that can be deployed on mobile phones to recognize Chinese.
|
||||||
|
You can directly download the optimized model.
|
||||||
|
|
||||||
|
| Version | Introduction | Model size | Detection model | Text Direction model | Recognition model | Paddle Lite branch |
|
||||||
|
| --- | --- | --- | --- | --- | --- | --- |
|
||||||
|
| V1.1 | extra-lightweight chinese OCR optimized model | 8.1M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_opt.nb) | develop |
|
||||||
|
| [slim] V1.1 | extra-lightweight chinese OCR optimized model | 3.5M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_det_prune_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_cls_quant_opt.nb) | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.1_rec_quant_opt.nb) | develop |
|
||||||
|
| V1.0 | lightweight Chinese OCR optimized model | 8.6M | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_det_opt.nb) | - | [Download](https://paddleocr.bj.bcebos.com/20-09-22/mobile/lite/ch_ppocr_mobile_v1.0_rec_opt.nb) | develop |
|
||||||
|
|
||||||
|
If the model to be deployed is not in the above table, you need to follow the steps below to obtain the optimized model.
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
||||||
|
cd Paddle-Lite
|
||||||
|
git checkout release/v2.7
|
||||||
|
./lite/tools/build.sh build_optimize_tool
|
||||||
|
```
|
||||||
|
|
||||||
|
The `opt` tool can be obtained by compiling Paddle Lite.
|
||||||
|
|
||||||
|
After the compilation is complete, the opt file is located under `build.opt/lite/api/`.
|
||||||
|
|
||||||
|
The `opt` can optimize the inference model saved by paddle.io.save_inference_model to get the model that the paddlelite API can use.
|
||||||
|
|
||||||
|
The usage of opt is as follows:
|
||||||
|
```
|
||||||
|
# 【Recommend】V1.1 is better than V1.0. steps for convert V1.1 model to nb file are as follows
|
||||||
|
wget https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar && tar xf ch_ppocr_mobile_v1.1_det_prune_infer.tar
|
||||||
|
wget https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar && tar xf ch_ppocr_mobile_v1.1_rec_quant_infer.tar
|
||||||
|
|
||||||
|
./opt --model_file=./ch_ppocr_mobile_v1.1_det_prune_infer/model --param_file=./ch_ppocr_mobile_v1.1_det_prune_infer/params --optimize_out=./ch_ppocr_mobile_v1.1_det_prune_opt --valid_targets=arm
|
||||||
|
./opt --model_file=./ch_ppocr_mobile_v1.1_rec_quant_infer/model --param_file=./ch_ppocr_mobile_v1.1_rec_quant_infer/params --optimize_out=./ch_ppocr_mobile_v1.1_rec_quant_opt --valid_targets=arm
|
||||||
|
|
||||||
|
# or use V1.0 model
|
||||||
|
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
|
||||||
|
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
|
||||||
|
|
||||||
|
./opt --model_file=./ch_det_mv3_db/model --param_file=./ch_det_mv3_db/params --optimize_out_type=naive_buffer --optimize_out=./ch_det_mv3_db_opt --valid_targets=arm
|
||||||
|
./opt --model_file=./ch_rec_mv3_crnn/model --param_file=./ch_rec_mv3_crnn/params --optimize_out_type=naive_buffer --optimize_out=./ch_rec_mv3_crnn_opt --valid_targets=arm
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
When the above code command is completed, there will be two more files `.nb` in the current directory, which is the converted model file.
|
||||||
|
|
||||||
|
## 5. Run optimized model on Phone
|
||||||
|
|
||||||
|
1. Prepare an Android phone with arm8. If the compiled prediction library and opt file are armv7, you need an arm7 phone and modify ARM_ABI = arm7 in the Makefile.
|
||||||
|
|
||||||
|
2. Make sure the phone is connected to the computer, open the USB debugging option of the phone, and select the file transfer mode.
|
||||||
|
|
||||||
|
3. Install the adb tool on the computer.
|
||||||
|
3.1 Install ADB for MAC
|
||||||
|
```
|
||||||
|
brew cask install android-platform-tools
|
||||||
|
```
|
||||||
|
3.2 Install ADB for Linux
|
||||||
|
```
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y wget adb
|
||||||
|
```
|
||||||
|
3.3 Install ADB for windows
|
||||||
|
[Download Link](https://developer.android.com/studio)
|
||||||
|
|
||||||
|
Verify whether adb is installed successfully
|
||||||
|
```
|
||||||
|
$ adb devices
|
||||||
|
|
||||||
|
List of devices attached
|
||||||
|
744be294 device
|
||||||
|
```
|
||||||
|
|
||||||
|
If there is `device` output, it means the installation was successful.
|
||||||
|
|
||||||
|
4. Prepare optimized models, prediction library files, test images and dictionary files used.
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone https://github.com/PaddlePaddle/PaddleOCR.git
|
||||||
|
cd PaddleOCR/deploy/lite/
|
||||||
|
# run prepare.sh
|
||||||
|
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
|
||||||
|
|
||||||
|
#
|
||||||
|
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
|
||||||
|
cd demo/cxx/ocr/
|
||||||
|
# copy paddle-lite C++ .so file to debug/ directory
|
||||||
|
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
|
||||||
|
|
||||||
|
cd inference_lite_lib.android.armv8/demo/cxx/ocr/
|
||||||
|
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Prepare the test image, taking `PaddleOCR/doc/imgs/11.jpg` as an example, copy the image file to the `demo/cxx/ocr/debug/` folder.
|
||||||
|
Prepare the model files optimized by the lite opt tool, `ch_det_mv3_db_opt.nb, ch_rec_mv3_crnn_opt.nb`,
|
||||||
|
and place them under the `demo/cxx/ocr/debug/` folder.
|
||||||
|
|
||||||
|
|
||||||
|
The structure of the OCR demo is as follows after the above command is executed:
|
||||||
|
```
|
||||||
|
demo/cxx/ocr/
|
||||||
|
|-- debug/
|
||||||
|
| |--ch_ppocr_mobile_v1.1_det_prune_opt.nb Detection model
|
||||||
|
| |--ch_ppocr_mobile_v1.1_rec_quant_opt.nb Recognition model
|
||||||
|
| |--ch_ppocr_mobile_cls_quant_opt.nb Text direction classification model
|
||||||
|
| |--11.jpg Image for OCR
|
||||||
|
| |--ppocr_keys_v1.txt Dictionary file
|
||||||
|
| |--libpaddle_light_api_shared.so C++ .so file
|
||||||
|
| |--config.txt Config file
|
||||||
|
|-- config.txt
|
||||||
|
|-- crnn_process.cc
|
||||||
|
|-- crnn_process.h
|
||||||
|
|-- db_post_process.cc
|
||||||
|
|-- db_post_process.h
|
||||||
|
|-- Makefile
|
||||||
|
|-- ocr_db_crnn.cc
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Note:
|
||||||
|
1. ppocr_keys_v1.txt is a Chinese dictionary file.
|
||||||
|
If the nb model is used for English recognition or other language recognition, dictionary file should be replaced with a dictionary of the corresponding language.
|
||||||
|
PaddleOCR provides a variety of dictionaries under ppocr/utils/, including:
|
||||||
|
```
|
||||||
|
dict/french_dict.txt # french
|
||||||
|
dict/german_dict.txt # german
|
||||||
|
ic15_dict.txt # english
|
||||||
|
dict/japan_dict.txt # japan
|
||||||
|
dict/korean_dict.txt # korean
|
||||||
|
ppocr_keys_v1.txt # chinese
|
||||||
|
```
|
||||||
|
|
||||||
|
2. `config.txt` of the detector and classifier, as shown below:
|
||||||
|
```
|
||||||
|
max_side_len 960 # Limit the maximum image height and width to 960
|
||||||
|
det_db_thresh 0.3 # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
|
||||||
|
det_db_box_thresh 0.5 # DDB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate
|
||||||
|
det_db_unclip_ratio 1.6 # Indicates the compactness of the text box, the smaller the value, the closer the text box to the text
|
||||||
|
use_direction_classify 0 # Whether to use the direction classifier, 0 means not to use, 1 means to use
|
||||||
|
```
|
||||||
|
|
||||||
|
5. Run Model on phone
|
||||||
|
|
||||||
|
```
|
||||||
|
cd inference_lite_lib.android.armv8/demo/cxx/ocr/
|
||||||
|
make -j
|
||||||
|
mv ocr_db_crnn ./debug/
|
||||||
|
adb push debug /data/local/tmp/
|
||||||
|
adb shell
|
||||||
|
cd /data/local/tmp/debug
|
||||||
|
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
|
||||||
|
# run model
|
||||||
|
./ocr_db_crnn ch_ppocr_mobile_v1.1_det_prune_opt.nb ch_ppocr_mobile_v1.1_rec_quant_opt.nb ch_ppocr_mobile_cls_quant_opt.nb ./11.jpg ppocr_keys_v1.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
The outputs are as follows:
|
||||||
|
|
||||||
|
<div align="center">
|
||||||
|
<img src="../imgs_results/lite_demo.png" width="600">
|
||||||
|
</div>
|
||||||
|
|
||||||
|
## FAQ
|
||||||
|
|
||||||
|
Q1: What if I want to change the model, do I need to run it again according to the process?
|
||||||
|
A1: If you have performed the above steps, you only need to replace the .nb model file to complete the model replacement.
|
||||||
|
|
||||||
|
Q2: How to test with another picture?
|
||||||
|
A2: Replace the .jpg test image under `./debug` with the image you want to test, and run `adb push` to push new image to the phone.
|
||||||
|
|
||||||
|
Q3: How to package it into the mobile APP?
|
||||||
|
A3: This demo aims to provide the core algorithm part that can run OCR on mobile phones. Further,
|
||||||
|
PaddleOCR/deploy/android_demo is an example of encapsulating this demo into a mobile app for reference.
|
Binary file not shown.
After Width: | Height: | Size: 94 KiB |
Loading…
Reference in New Issue