pretrain_weights to pretrained_model
This commit is contained in:
parent
4c9d141c6f
commit
92671d7356
|
@ -49,14 +49,14 @@ python3 setup.py install
|
||||||
|
|
||||||
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
|
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
|
||||||
```bash
|
```bash
|
||||||
python3.7 deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrain_weights="your trained model"
|
python3.7 deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model="your trained model"
|
||||||
```
|
```
|
||||||
|
|
||||||
### 4. 导出模型、预测部署
|
### 4. 导出模型、预测部署
|
||||||
|
|
||||||
在得到裁剪训练保存的模型后,我们可以将其导出为inference_model:
|
在得到裁剪训练保存的模型后,我们可以将其导出为inference_model:
|
||||||
```bash
|
```bash
|
||||||
pytho3.7 deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.save_inference_dir=inference_model
|
pytho3.7 deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./output/det_db/best_accuracy Global.save_inference_dir=inference_model
|
||||||
```
|
```
|
||||||
|
|
||||||
inference model的预测和部署参考:
|
inference model的预测和部署参考:
|
||||||
|
|
|
@ -54,7 +54,7 @@ Enter the PaddleOCR root directory,perform sensitivity analysis on the model w
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
|
||||||
python3.7 deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrain_weights="your trained model"
|
python3.7 deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model="your trained model"
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -63,7 +63,7 @@ python3.7 deploy/slim/prune/sensitivity_anal.py -c configs/det/ch_ppocr_v2.0/ch_
|
||||||
|
|
||||||
We can export the pruned model as inference_model for deployment:
|
We can export the pruned model as inference_model for deployment:
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
|
python deploy/slim/prune/export_prune_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./output/det_db/best_accuracy Global.save_inference_dir=inference_model
|
||||||
```
|
```
|
||||||
|
|
||||||
Reference for prediction and deployment of inference model:
|
Reference for prediction and deployment of inference model:
|
||||||
|
|
|
@ -37,12 +37,12 @@ PaddleOCR提供了一系列训练好的[模型](../../../doc/doc_ch/models_list.
|
||||||
|
|
||||||
量化训练的代码位于slim/quantization/quant.py 中,比如训练检测模型,训练指令如下:
|
量化训练的代码位于slim/quantization/quant.py 中,比如训练检测模型,训练指令如下:
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model='your trained model' Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
# 比如下载提供的训练模型
|
# 比如下载提供的训练模型
|
||||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_inference_dir=./output/quant_inference_model
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_inference_dir=./output/quant_inference_model
|
||||||
|
|
||||||
```
|
```
|
||||||
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
|
如果要训练识别模型的量化,修改配置文件和加载的模型参数即可。
|
||||||
|
|
|
@ -43,13 +43,12 @@ After the quantization strategy is defined, the model can be quantified.
|
||||||
|
|
||||||
The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows:
|
The code for quantization training is located in `slim/quantization/quant.py`. For example, to train a detection model, the training instructions are as follows:
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights='your trained model' Global.save_model_dir=./output/quant_model
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model='your trained model' Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
# download provided model
|
# download provided model
|
||||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
tar -xf ch_ppocr_mobile_v2.0_det_train.tar
|
||||||
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
|
python deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_model_dir=./output/quant_model
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue