Merge branch 'dygraph' into pgnet-v1
This commit is contained in:
commit
93c919e644
|
@ -117,13 +117,16 @@ class RawRandAugment(object):
|
||||||
class RandAugment(RawRandAugment):
|
class RandAugment(RawRandAugment):
|
||||||
""" RandAugment wrapper to auto fit different img types """
|
""" RandAugment wrapper to auto fit different img types """
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, prob=0.5, *args, **kwargs):
|
||||||
|
self.prob = prob
|
||||||
if six.PY2:
|
if six.PY2:
|
||||||
super(RandAugment, self).__init__(*args, **kwargs)
|
super(RandAugment, self).__init__(*args, **kwargs)
|
||||||
else:
|
else:
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
def __call__(self, data):
|
def __call__(self, data):
|
||||||
|
if np.random.rand() > self.prob:
|
||||||
|
return data
|
||||||
img = data['image']
|
img = data['image']
|
||||||
if not isinstance(img, Image.Image):
|
if not isinstance(img, Image.Image):
|
||||||
img = np.ascontiguousarray(img)
|
img = np.ascontiguousarray(img)
|
||||||
|
|
|
@ -98,10 +98,10 @@ class TextClassifier(object):
|
||||||
norm_img_batch = np.concatenate(norm_img_batch)
|
norm_img_batch = np.concatenate(norm_img_batch)
|
||||||
norm_img_batch = norm_img_batch.copy()
|
norm_img_batch = norm_img_batch.copy()
|
||||||
starttime = time.time()
|
starttime = time.time()
|
||||||
|
|
||||||
self.input_tensor.copy_from_cpu(norm_img_batch)
|
self.input_tensor.copy_from_cpu(norm_img_batch)
|
||||||
self.predictor.run()
|
self.predictor.run()
|
||||||
prob_out = self.output_tensors[0].copy_to_cpu()
|
prob_out = self.output_tensors[0].copy_to_cpu()
|
||||||
|
self.predictor.try_shrink_memory()
|
||||||
cls_result = self.postprocess_op(prob_out)
|
cls_result = self.postprocess_op(prob_out)
|
||||||
elapse += time.time() - starttime
|
elapse += time.time() - starttime
|
||||||
for rno in range(len(cls_result)):
|
for rno in range(len(cls_result)):
|
||||||
|
|
|
@ -180,7 +180,7 @@ class TextDetector(object):
|
||||||
preds['maps'] = outputs[0]
|
preds['maps'] = outputs[0]
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
self.predictor.try_shrink_memory()
|
||||||
post_result = self.postprocess_op(preds, shape_list)
|
post_result = self.postprocess_op(preds, shape_list)
|
||||||
dt_boxes = post_result[0]['points']
|
dt_boxes = post_result[0]['points']
|
||||||
if self.det_algorithm == "SAST" and self.det_sast_polygon:
|
if self.det_algorithm == "SAST" and self.det_sast_polygon:
|
||||||
|
|
|
@ -237,7 +237,7 @@ class TextRecognizer(object):
|
||||||
output = output_tensor.copy_to_cpu()
|
output = output_tensor.copy_to_cpu()
|
||||||
outputs.append(output)
|
outputs.append(output)
|
||||||
preds = outputs[0]
|
preds = outputs[0]
|
||||||
|
self.predictor.try_shrink_memory()
|
||||||
rec_result = self.postprocess_op(preds)
|
rec_result = self.postprocess_op(preds)
|
||||||
for rno in range(len(rec_result)):
|
for rno in range(len(rec_result)):
|
||||||
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
||||||
|
|
|
@ -145,7 +145,8 @@ def create_predictor(args, mode, logger):
|
||||||
#config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
|
#config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
|
||||||
args.rec_batch_num = 1
|
args.rec_batch_num = 1
|
||||||
|
|
||||||
# config.enable_memory_optim()
|
# enable memory optim
|
||||||
|
config.enable_memory_optim()
|
||||||
config.disable_glog_info()
|
config.disable_glog_info()
|
||||||
|
|
||||||
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
|
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
|
||||||
|
|
Loading…
Reference in New Issue