识别文本框时,对文本框按宽高比进行排序。
This commit is contained in:
parent
4ca78a0748
commit
9717944cde
|
@ -13,9 +13,9 @@
|
|||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
__dir__ = os.path.dirname(__file__)
|
||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(__dir__)
|
||||
sys.path.append(os.path.join(__dir__, '../..'))
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
|
||||
|
||||
import tools.infer.utility as utility
|
||||
from ppocr.utils.utility import initial_logger
|
||||
|
@ -33,14 +33,12 @@ class TextRecognizer(object):
|
|||
def __init__(self, args):
|
||||
self.predictor, self.input_tensor, self.output_tensors =\
|
||||
utility.create_predictor(args, mode="rec")
|
||||
image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
||||
self.rec_image_shape = image_shape
|
||||
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
||||
self.character_type = args.rec_char_type
|
||||
self.rec_batch_num = args.rec_batch_num
|
||||
self.rec_algorithm = args.rec_algorithm
|
||||
char_ops_params = {}
|
||||
char_ops_params["character_type"] = args.rec_char_type
|
||||
char_ops_params["character_dict_path"] = args.rec_char_dict_path
|
||||
char_ops_params = {"character_type": args.rec_char_type,
|
||||
"character_dict_path": args.rec_char_dict_path}
|
||||
if self.rec_algorithm != "RARE":
|
||||
char_ops_params['loss_type'] = 'ctc'
|
||||
self.loss_type = 'ctc'
|
||||
|
@ -51,16 +49,11 @@ class TextRecognizer(object):
|
|||
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
imgC, imgH, imgW = self.rec_image_shape
|
||||
if self.character_type == "ch":
|
||||
imgW = int(32 * max_wh_ratio)
|
||||
h = img.shape[0]
|
||||
w = img.shape[1]
|
||||
ratio = w / float(h)
|
||||
if math.ceil(imgH * ratio) > imgW:
|
||||
resized_w = imgW
|
||||
else:
|
||||
resized_w = int(math.ceil(imgH * ratio))
|
||||
resized_image = cv2.resize(img, (resized_w, imgH))
|
||||
assert imgC == img.shape[2]
|
||||
imgW = int(math.ceil(32 * max_wh_ratio))
|
||||
h, w = img.shape[:2]
|
||||
resized_w = int(math.ceil(imgH * w / float(h)))
|
||||
resized_image = cv2.resize(img, (resized_w, imgH), interpolation=cv2.INTER_CUBIC)
|
||||
resized_image = resized_image.astype('float32')
|
||||
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
||||
resized_image -= 0.5
|
||||
|
@ -71,7 +64,15 @@ class TextRecognizer(object):
|
|||
|
||||
def __call__(self, img_list):
|
||||
img_num = len(img_list)
|
||||
rec_res = []
|
||||
# 统计所有文本条的宽高比
|
||||
width_list = []
|
||||
for img in img_list:
|
||||
width_list.append(img.shape[1] / float(img.shape[0]))
|
||||
# 对于文本框比较多且长短差异较大的情况下,通过排序再组合batch可以明显加速识别
|
||||
indices = np.argsort(np.array(width_list))
|
||||
|
||||
# rec_res = []
|
||||
rec_res = [['', 0.0]] * img_num
|
||||
batch_num = self.rec_batch_num
|
||||
predict_time = 0
|
||||
for beg_img_no in range(0, img_num, batch_num):
|
||||
|
@ -80,10 +81,12 @@ class TextRecognizer(object):
|
|||
max_wh_ratio = 0
|
||||
for ino in range(beg_img_no, end_img_no):
|
||||
h, w = img_list[ino].shape[0:2]
|
||||
# h, w = img_list[indices[ino]].shape[0:2]
|
||||
wh_ratio = w * 1.0 / h
|
||||
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||
for ino in range(beg_img_no, end_img_no):
|
||||
norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
|
||||
# norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
|
||||
norm_img = norm_img[np.newaxis, :]
|
||||
norm_img_batch.append(norm_img)
|
||||
norm_img_batch = np.concatenate(norm_img_batch)
|
||||
|
@ -111,7 +114,8 @@ class TextRecognizer(object):
|
|||
blank = probs.shape[1]
|
||||
valid_ind = np.where(ind != (blank - 1))[0]
|
||||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||||
rec_res.append([preds_text, score])
|
||||
# rec_res.append([preds_text, score])
|
||||
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
||||
else:
|
||||
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
||||
predict_batch = self.output_tensors[1].copy_to_cpu()
|
||||
|
@ -126,19 +130,19 @@ class TextRecognizer(object):
|
|||
preds = rec_idx_batch[rno, 1:end_pos[1]]
|
||||
score = np.mean(predict_batch[rno, 1:end_pos[1]])
|
||||
preds_text = self.char_ops.decode(preds)
|
||||
rec_res.append([preds_text, score])
|
||||
# rec_res.append([preds_text, score])
|
||||
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
||||
|
||||
return rec_res, predict_time
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = utility.parse_args()
|
||||
def main(args):
|
||||
image_file_list = get_image_file_list(args.image_dir)
|
||||
text_recognizer = TextRecognizer(args)
|
||||
valid_image_file_list = []
|
||||
img_list = []
|
||||
for image_file in image_file_list:
|
||||
img = cv2.imread(image_file)
|
||||
img = cv2.imread(image_file, cv2.IMREAD_COLOR)
|
||||
if img is None:
|
||||
logger.info("error in loading image:{}".format(image_file))
|
||||
continue
|
||||
|
@ -159,3 +163,7 @@ if __name__ == "__main__":
|
|||
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
||||
print("Total predict time for %d images:%.3f" %
|
||||
(len(img_list), predict_time))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(utility.parse_args())
|
||||
|
|
|
@ -75,6 +75,7 @@ class TextSystem(object):
|
|||
def __call__(self, img):
|
||||
ori_im = img.copy()
|
||||
dt_boxes, elapse = self.text_detector(img)
|
||||
print("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), elapse))
|
||||
if dt_boxes is None:
|
||||
return None, None
|
||||
img_crop_list = []
|
||||
|
@ -86,6 +87,7 @@ class TextSystem(object):
|
|||
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
|
||||
img_crop_list.append(img_crop)
|
||||
rec_res, elapse = self.text_recognizer(img_crop_list)
|
||||
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
|
||||
# self.print_draw_crop_rec_res(img_crop_list, rec_res)
|
||||
return dt_boxes, rec_res
|
||||
|
||||
|
|
Loading…
Reference in New Issue