识别文本框时,对文本框按宽高比进行排序。

This commit is contained in:
zhangxin 2020-06-23 22:14:47 +08:00
parent 4ca78a0748
commit 9717944cde
2 changed files with 33 additions and 23 deletions

View File

@ -13,9 +13,9 @@
# limitations under the License. # limitations under the License.
import os import os
import sys import sys
__dir__ = os.path.dirname(__file__) __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__) sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '../..')) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import tools.infer.utility as utility import tools.infer.utility as utility
from ppocr.utils.utility import initial_logger from ppocr.utils.utility import initial_logger
@ -33,14 +33,12 @@ class TextRecognizer(object):
def __init__(self, args): def __init__(self, args):
self.predictor, self.input_tensor, self.output_tensors =\ self.predictor, self.input_tensor, self.output_tensors =\
utility.create_predictor(args, mode="rec") utility.create_predictor(args, mode="rec")
image_shape = [int(v) for v in args.rec_image_shape.split(",")] self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
self.rec_image_shape = image_shape
self.character_type = args.rec_char_type self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm self.rec_algorithm = args.rec_algorithm
char_ops_params = {} char_ops_params = {"character_type": args.rec_char_type,
char_ops_params["character_type"] = args.rec_char_type "character_dict_path": args.rec_char_dict_path}
char_ops_params["character_dict_path"] = args.rec_char_dict_path
if self.rec_algorithm != "RARE": if self.rec_algorithm != "RARE":
char_ops_params['loss_type'] = 'ctc' char_ops_params['loss_type'] = 'ctc'
self.loss_type = 'ctc' self.loss_type = 'ctc'
@ -51,16 +49,11 @@ class TextRecognizer(object):
def resize_norm_img(self, img, max_wh_ratio): def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape imgC, imgH, imgW = self.rec_image_shape
if self.character_type == "ch": assert imgC == img.shape[2]
imgW = int(32 * max_wh_ratio) imgW = int(math.ceil(32 * max_wh_ratio))
h = img.shape[0] h, w = img.shape[:2]
w = img.shape[1] resized_w = int(math.ceil(imgH * w / float(h)))
ratio = w / float(h) resized_image = cv2.resize(img, (resized_w, imgH), interpolation=cv2.INTER_CUBIC)
if math.ceil(imgH * ratio) > imgW:
resized_w = imgW
else:
resized_w = int(math.ceil(imgH * ratio))
resized_image = cv2.resize(img, (resized_w, imgH))
resized_image = resized_image.astype('float32') resized_image = resized_image.astype('float32')
resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image = resized_image.transpose((2, 0, 1)) / 255
resized_image -= 0.5 resized_image -= 0.5
@ -71,7 +64,15 @@ class TextRecognizer(object):
def __call__(self, img_list): def __call__(self, img_list):
img_num = len(img_list) img_num = len(img_list)
rec_res = [] # 统计所有文本条的宽高比
width_list = []
for img in img_list:
width_list.append(img.shape[1] / float(img.shape[0]))
# 对于文本框比较多且长短差异较大的情况下通过排序再组合batch可以明显加速识别
indices = np.argsort(np.array(width_list))
# rec_res = []
rec_res = [['', 0.0]] * img_num
batch_num = self.rec_batch_num batch_num = self.rec_batch_num
predict_time = 0 predict_time = 0
for beg_img_no in range(0, img_num, batch_num): for beg_img_no in range(0, img_num, batch_num):
@ -80,10 +81,12 @@ class TextRecognizer(object):
max_wh_ratio = 0 max_wh_ratio = 0
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
h, w = img_list[ino].shape[0:2] h, w = img_list[ino].shape[0:2]
# h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio) max_wh_ratio = max(max_wh_ratio, wh_ratio)
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio) norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
# norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio)
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img) norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = np.concatenate(norm_img_batch)
@ -111,7 +114,8 @@ class TextRecognizer(object):
blank = probs.shape[1] blank = probs.shape[1]
valid_ind = np.where(ind != (blank - 1))[0] valid_ind = np.where(ind != (blank - 1))[0]
score = np.mean(probs[valid_ind, ind[valid_ind]]) score = np.mean(probs[valid_ind, ind[valid_ind]])
rec_res.append([preds_text, score]) # rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
else: else:
rec_idx_batch = self.output_tensors[0].copy_to_cpu() rec_idx_batch = self.output_tensors[0].copy_to_cpu()
predict_batch = self.output_tensors[1].copy_to_cpu() predict_batch = self.output_tensors[1].copy_to_cpu()
@ -126,19 +130,19 @@ class TextRecognizer(object):
preds = rec_idx_batch[rno, 1:end_pos[1]] preds = rec_idx_batch[rno, 1:end_pos[1]]
score = np.mean(predict_batch[rno, 1:end_pos[1]]) score = np.mean(predict_batch[rno, 1:end_pos[1]])
preds_text = self.char_ops.decode(preds) preds_text = self.char_ops.decode(preds)
rec_res.append([preds_text, score]) # rec_res.append([preds_text, score])
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
return rec_res, predict_time return rec_res, predict_time
if __name__ == "__main__": def main(args):
args = utility.parse_args()
image_file_list = get_image_file_list(args.image_dir) image_file_list = get_image_file_list(args.image_dir)
text_recognizer = TextRecognizer(args) text_recognizer = TextRecognizer(args)
valid_image_file_list = [] valid_image_file_list = []
img_list = [] img_list = []
for image_file in image_file_list: for image_file in image_file_list:
img = cv2.imread(image_file) img = cv2.imread(image_file, cv2.IMREAD_COLOR)
if img is None: if img is None:
logger.info("error in loading image:{}".format(image_file)) logger.info("error in loading image:{}".format(image_file))
continue continue
@ -159,3 +163,7 @@ if __name__ == "__main__":
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino])) print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
print("Total predict time for %d images:%.3f" % print("Total predict time for %d images:%.3f" %
(len(img_list), predict_time)) (len(img_list), predict_time))
if __name__ == "__main__":
main(utility.parse_args())

View File

@ -75,6 +75,7 @@ class TextSystem(object):
def __call__(self, img): def __call__(self, img):
ori_im = img.copy() ori_im = img.copy()
dt_boxes, elapse = self.text_detector(img) dt_boxes, elapse = self.text_detector(img)
print("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), elapse))
if dt_boxes is None: if dt_boxes is None:
return None, None return None, None
img_crop_list = [] img_crop_list = []
@ -86,6 +87,7 @@ class TextSystem(object):
img_crop = self.get_rotate_crop_image(ori_im, tmp_box) img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop) img_crop_list.append(img_crop)
rec_res, elapse = self.text_recognizer(img_crop_list) rec_res, elapse = self.text_recognizer(img_crop_list)
print("rec_res num : {}, elapse : {}".format(len(rec_res), elapse))
# self.print_draw_crop_rec_res(img_crop_list, rec_res) # self.print_draw_crop_rec_res(img_crop_list, rec_res)
return dt_boxes, rec_res return dt_boxes, rec_res