update doc/doc_en/models_and_config md
This commit is contained in:
parent
dbdcf5e5f9
commit
98905464c2
|
@ -1,11 +1,20 @@
|
|||
|
||||
# OCR 简要介绍
|
||||
# 目录
|
||||
- [1. OCR 简要介绍](#1-ocr-----)
|
||||
* [1.1 OCR 检测模型基本概念](#11-ocr---------)
|
||||
* [1.2 OCR 识别模型基本概念](#12-ocr---------)
|
||||
* [1.3 PP-OCR模型](#13-pp-ocr--)
|
||||
|
||||
|
||||
# 1. OCR 简要介绍
|
||||
本节简要介绍OCR检测模型、识别模型的基本概念,并介绍PaddleOCR的PP-OCR模型。
|
||||
|
||||
OCR(Optical Character Recognition,光学字符识别)目前是文字识别的统称,已不限于文档或书本文字识别,更包括识别自然场景下的文字,又可以称为STR(Scene Text Recognition)。
|
||||
|
||||
OCR文字识别一般包括两个部分,文本检测和文本识别;文本检测首先利用检测算法检测到图像中的文本行;然后检测到的文本行用识别算法去识别到具体文字。
|
||||
|
||||
|
||||
## OCR 检测模型基本概念
|
||||
## 1.1 OCR 检测模型基本概念
|
||||
|
||||
文本检测就是要定位图像中的文字区域,然后通常以边界框的形式将单词或文本行标记出来。传统的文字检测算法多是通过手工提取特征的方式,特点是速度快,简单场景效果好,但是面对自然场景,效果会大打折扣。当前多是采用深度学习方法来做。
|
||||
|
||||
|
@ -15,15 +24,15 @@ OCR文字识别一般包括两个部分,文本检测和文本识别;文本
|
|||
3. 混合目标检测和分割的方法;
|
||||
|
||||
|
||||
## OCR 识别模型基本概念
|
||||
## 1.2 OCR 识别模型基本概念
|
||||
|
||||
OCR识别算法的输入数据一般是文本行,背景信息不多,文字占据主要部分,识别算法目前可以分为两类算法:
|
||||
1. 基于CTC的方法;即识别算法的文字预测模块是基于CTC的,常用的算法组合为CNN+RNN+CTC。目前也有一些算法尝试在网络中加入transformer模块等等。
|
||||
2. 基于Attention的方法;即识别算法的文字预测模块是基于Attention的,常用算法组合是CNN+RNN+Attention。
|
||||
|
||||
|
||||
## PPOCR模型
|
||||
## 1.3 PP-OCR模型
|
||||
|
||||
PaddleOCR 中集成了很多OCR算法,文本检测算法有DB、EAST、SAST等等,文本识别算法有CRNN、RARE、StarNet、Rosetta、SRN等算法。
|
||||
|
||||
其中PaddleOCR针对中英文自然场景通用OCR,推出了PPOCR系列模型,PPOCR模型由DB+CRNN算法组成,利用海量中文数据训练加上模型调优方法,在中文场景上具备较高的文本检测识别能力。并且PaddleOCR推出了高精度超轻量PPOCR-v2模型,检测模型仅3M,识别模型仅8.5M,利用[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)的模型量化方法,可以在保持精度不降低的情况下,将检测模型压缩到0.8M,识别压缩到3M,更加适用于移动端部署场景。
|
||||
其中PaddleOCR针对中英文自然场景通用OCR,推出了PP-OCR系列模型,PP-OCR模型由DB+CRNN算法组成,利用海量中文数据训练加上模型调优方法,在中文场景上具备较高的文本检测识别能力。并且PaddleOCR推出了高精度超轻量PP-OCRv2模型,检测模型仅3M,识别模型仅8.5M,利用[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)的模型量化方法,可以在保持精度不降低的情况下,将检测模型压缩到0.8M,识别压缩到3M,更加适用于移动端部署场景。
|
||||
|
|
|
@ -1,4 +1,17 @@
|
|||
# CONTENT
|
||||
- [Paste Your Document In Here](#paste-your-document-in-here)
|
||||
- [INTRODUCTION ABOUT OCR](#introduction-about-ocr)
|
||||
* [BASIC CONCEPTS OF OCR DETECTION MODEL](#basic-concepts-of-ocr-detection-model)
|
||||
* [Basic concepts of OCR recognition model](#basic-concepts-of-ocr-recognition-model)
|
||||
* [PP-OCR model](#pp-ocr-model)
|
||||
* [And a table of contents](#and-a-table-of-contents)
|
||||
* [On the right](#on-the-right)
|
||||
|
||||
|
||||
# INTRODUCTION ABOUT OCR
|
||||
|
||||
This section briefly introduces the basic concepts of OCR detection model and recognition model, and introduces PaddleOCR's PP-OCR model.
|
||||
|
||||
OCR (Optical Character Recognition, Optical Character Recognition) is currently the general term for text recognition. It is not limited to document or book text recognition, but also includes recognizing text in natural scenes. It can also be called STR (Scene Text Recognition).
|
||||
|
||||
OCR text recognition generally includes two parts, text detection and text recognition. The text detection module first uses detection algorithms to detect text lines in the image. And then the recognition algorithm to identify the specific text in the text line.
|
||||
|
@ -21,8 +34,8 @@ The input of the OCR recognition algorithm is generally text lines images which
|
|||
2. Attention-based method. The text prediction module of the recognition algorithm is based on Attention, and the commonly used algorithm combination is CNN+RNN+Attention.
|
||||
|
||||
|
||||
## PPOCR model
|
||||
## PP-OCR model
|
||||
|
||||
PaddleOCR integrates many OCR algorithms, text detection algorithms include DB, EAST, SAST, etc., text recognition algorithms include CRNN, RARE, StarNet, Rosetta, SRN and other algorithms.
|
||||
|
||||
Among them, PaddleOCR has released the PPOCR series model for the general OCR in Chinese and English natural scenes. The PPOCR model is composed of the DB+CRNN algorithm. It uses massive Chinese data training and model tuning methods to have high text detection and recognition capabilities in Chinese scenes. And PaddleOCR has launched a high-precision and ultra-lightweight PPOCR-v2 model. The detection model is only 3M, and the recognition model is only 8.5M. Using [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)'s model quantification method, the detection model can be compressed to 0.8M without reducing the accuracy. The recognition is compressed to 3M, which is more suitable for mobile deployment scenarios.
|
||||
Among them, PaddleOCR has released the PP-OCR series model for the general OCR in Chinese and English natural scenes. The PP-OCR model is composed of the DB+CRNN algorithm. It uses massive Chinese data training and model tuning methods to have high text detection and recognition capabilities in Chinese scenes. And PaddleOCR has launched a high-precision and ultra-lightweight PP-OCRv2 model. The detection model is only 3M, and the recognition model is only 8.5M. Using [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)'s model quantification method, the detection model can be compressed to 0.8M without reducing the accuracy. The recognition is compressed to 3M, which is more suitable for mobile deployment scenarios.
|
||||
|
|
Loading…
Reference in New Issue