updata readme
This commit is contained in:
parent
51e0dd4a0f
commit
a3124696b0
221
README.md
221
README.md
|
@ -12,120 +12,35 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
|
||||||
- [more](./doc/doc_ch/update.md)
|
- [more](./doc/doc_ch/update.md)
|
||||||
|
|
||||||
## 特性
|
## 特性
|
||||||
- 超轻量级中文OCR,总模型仅8.6M
|
- 超轻量级中文OCR模型,总模型仅8.6M
|
||||||
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
|
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
|
||||||
- 检测模型DB(4.1M)+识别模型CRNN(4.5M)
|
- 检测模型DB(4.1M)+识别模型CRNN(4.5M)
|
||||||
|
- 实用通用中文OCR模型
|
||||||
|
- 多种预测推理部署方案,包括服务部署和端测部署
|
||||||
- 多种文本检测训练算法,EAST、DB
|
- 多种文本检测训练算法,EAST、DB
|
||||||
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
|
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE
|
||||||
|
- 可运行于Linux、Windows、MacOS等多种系统
|
||||||
|
|
||||||
<a name="支持的中文模型列表"></a>
|
## 快速体验
|
||||||
### 支持的中文模型列表:
|
|
||||||
|
|
||||||
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|
|
||||||
|-|-|-|-|-|
|
|
||||||
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|
|
||||||
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
|
|
||||||
|
|
||||||
超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
|
|
||||||
|
|
||||||
**也可以按如下教程快速体验中文OCR模型。**
|
|
||||||
|
|
||||||
## **超轻量级中文OCR以及通用中文OCR体验**
|
|
||||||
|
|
||||||
![](doc/imgs_results/11.jpg)
|
![](doc/imgs_results/11.jpg)
|
||||||
|
|
||||||
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)、
|
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)、
|
||||||
[通用中文OCR效果展示](#通用中文OCR效果展示)、[支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)。
|
[通用中文OCR效果展示](#通用中文OCR效果展示)、[支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)。
|
||||||
|
|
||||||
#### 1.环境配置
|
- 超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
|
||||||
|
|
||||||
请先参考[快速安装](./doc/doc_ch/installation.md)配置PaddleOCR运行环境。
|
- [中文OCR模型快速开始](./doc/doc_ch/quickstart.md)
|
||||||
|
|
||||||
#### 2.inference模型下载
|
## 中文OCR模型列表
|
||||||
|
|
||||||
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*
|
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|
||||||
|
|-|-|-|-|-|
|
||||||
|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|
||||||
|
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
|
||||||
|
|
||||||
|
## 算法介绍
|
||||||
#### 下载检测/识别模型并解压
|
### 1.文本检测算法
|
||||||
|
|
||||||
复制[中文模型列表](#支持的中文模型列表) 中的检测和识别 `inference模型` 地址,下载并解压:
|
|
||||||
|
|
||||||
```
|
|
||||||
mkdir inference && cd inference
|
|
||||||
# 下载检测模型并解压
|
|
||||||
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
|
|
||||||
# 下载识别模型并解压
|
|
||||||
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
|
|
||||||
cd ..
|
|
||||||
```
|
|
||||||
|
|
||||||
以超轻量级模型为例:
|
|
||||||
|
|
||||||
```
|
|
||||||
mkdir inference && cd inference
|
|
||||||
# 下载超轻量级中文OCR模型的检测模型并解压
|
|
||||||
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
|
|
||||||
# 下载超轻量级中文OCR模型的识别模型并解压
|
|
||||||
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
|
|
||||||
cd ..
|
|
||||||
```
|
|
||||||
|
|
||||||
解压完毕后应有如下文件结构:
|
|
||||||
|
|
||||||
```
|
|
||||||
|-inference
|
|
||||||
|-ch_rec_mv3_crnn
|
|
||||||
|- model
|
|
||||||
|- params
|
|
||||||
|-ch_det_mv3_db
|
|
||||||
|- model
|
|
||||||
|- params
|
|
||||||
...
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 3.单张图像或者图像集合预测
|
|
||||||
|
|
||||||
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
|
|
||||||
|
|
||||||
```bash
|
|
||||||
|
|
||||||
# 预测image_dir指定的单张图像
|
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
|
|
||||||
|
|
||||||
# 预测image_dir指定的图像集合
|
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
|
|
||||||
|
|
||||||
# 如果想使用CPU进行预测,需设置use_gpu参数为False
|
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
|
|
||||||
```
|
|
||||||
|
|
||||||
通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
|
|
||||||
```
|
|
||||||
# 预测image_dir指定的单张图像
|
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
|
|
||||||
```
|
|
||||||
|
|
||||||
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
|
|
||||||
|
|
||||||
```
|
|
||||||
# 预测image_dir指定的单张图像
|
|
||||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
|
|
||||||
```
|
|
||||||
|
|
||||||
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/doc_ch/inference.md)。
|
|
||||||
|
|
||||||
## 文档教程
|
|
||||||
- [快速安装](./doc/doc_ch/installation.md)
|
|
||||||
- [文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
|
|
||||||
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
|
|
||||||
- [基于预测引擎推理](./doc/doc_ch/inference.md)
|
|
||||||
- [yml配置文件参数介绍](./doc/doc_ch/config_ch.md)
|
|
||||||
- [数据集](./doc/doc_ch/datasets.md)
|
|
||||||
- [FAQ](#FAQ)
|
|
||||||
- [联系我们](#欢迎加入PaddleOCR技术交流群)
|
|
||||||
- [参考文献](#参考文献)
|
|
||||||
|
|
||||||
## 文本检测算法
|
|
||||||
|
|
||||||
PaddleOCR开源的文本检测算法列表:
|
PaddleOCR开源的文本检测算法列表:
|
||||||
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
|
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
|
||||||
|
@ -151,7 +66,7 @@ PaddleOCR开源的文本检测算法列表:
|
||||||
|
|
||||||
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)。
|
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)。
|
||||||
|
|
||||||
## 文本识别算法
|
### 2.文本识别算法
|
||||||
|
|
||||||
PaddleOCR开源的文本识别算法列表:
|
PaddleOCR开源的文本识别算法列表:
|
||||||
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
|
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
|
||||||
|
@ -181,34 +96,46 @@ PaddleOCR开源的文本识别算法列表:
|
||||||
|
|
||||||
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)。
|
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)。
|
||||||
|
|
||||||
## 端到端OCR算法
|
### 3.端到端OCR算法
|
||||||
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
|
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
|
||||||
|
|
||||||
<a name="超轻量级中文OCR效果展示"></a>
|
## 文档教程
|
||||||
## 超轻量级中文OCR效果展示
|
- [快速安装](./doc/doc_ch/installation.md)
|
||||||
|
- [中文OCR模型快速开始](./doc/doc_ch/quickstart.md)
|
||||||
|
- 模型训练/评估/预测
|
||||||
|
- [文本检测](./doc/doc_ch/detection.md)
|
||||||
|
- [文本识别](./doc/doc_ch/recognition.md)
|
||||||
|
- [yml参数配置文件介绍](./doc/doc_ch/config_ch.md)
|
||||||
|
- 预测部署
|
||||||
|
- [基于Python预测引擎推理](./doc/doc_ch/inference.md)
|
||||||
|
- 基于C++预测引擎推理(comming soon)
|
||||||
|
- [服务部署](./doc/doc_ch/serving.md)
|
||||||
|
- 端测部署(comming soon)
|
||||||
|
- [数据集](./doc/doc_ch/datasets.md)
|
||||||
|
- [FAQ](#FAQ)
|
||||||
|
- 效果展示
|
||||||
|
- [超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
|
||||||
|
- [通用中文OCR效果展示](#通用中文OCR效果展示)
|
||||||
|
- [支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
|
||||||
|
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
|
||||||
|
- [参考文献](./doc/doc_ch/reference.md)
|
||||||
|
- [许可证书](#许可证书)
|
||||||
|
- [贡献代码](#贡献代码)
|
||||||
|
|
||||||
|
## 效果展示
|
||||||
|
|
||||||
|
<a name="超轻量级中文OCR效果展示"></a>
|
||||||
|
### 1.超轻量级中文OCR效果展示
|
||||||
|
|
||||||
![](doc/imgs_results/1.jpg)
|
|
||||||
![](doc/imgs_results/7.jpg)
|
![](doc/imgs_results/7.jpg)
|
||||||
![](doc/imgs_results/12.jpg)
|
|
||||||
![](doc/imgs_results/4.jpg)
|
|
||||||
![](doc/imgs_results/6.jpg)
|
|
||||||
![](doc/imgs_results/9.jpg)
|
|
||||||
![](doc/imgs_results/16.png)
|
|
||||||
![](doc/imgs_results/22.jpg)
|
|
||||||
|
|
||||||
<a name="通用中文OCR效果展示"></a>
|
<a name="通用中文OCR效果展示"></a>
|
||||||
## 通用中文OCR效果展示
|
### 2.通用中文OCR效果展示
|
||||||
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
|
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
|
||||||
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
|
|
||||||
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)
|
|
||||||
|
|
||||||
<a name="支持空格的中文OCR效果展示"></a>
|
<a name="支持空格的中文OCR效果展示"></a>
|
||||||
## 支持空格的中文OCR效果展示
|
### 3.支持空格的中文OCR效果展示
|
||||||
|
|
||||||
### 轻量级模型
|
|
||||||
![](doc/imgs_results/img_11.jpg)
|
|
||||||
|
|
||||||
### 通用模型
|
|
||||||
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)
|
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)
|
||||||
|
|
||||||
<a name="FAQ"></a>
|
<a name="FAQ"></a>
|
||||||
|
@ -232,65 +159,11 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识
|
||||||
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~
|
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~
|
||||||
<img src="./doc/paddlehelp.jpg" width = "200" height = "200" />
|
<img src="./doc/paddlehelp.jpg" width = "200" height = "200" />
|
||||||
|
|
||||||
<a name="参考文献"></a>
|
<a name="许可证书"></a>
|
||||||
## 参考文献
|
|
||||||
```
|
|
||||||
1. EAST:
|
|
||||||
@inproceedings{zhou2017east,
|
|
||||||
title={EAST: an efficient and accurate scene text detector},
|
|
||||||
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
|
|
||||||
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
|
|
||||||
pages={5551--5560},
|
|
||||||
year={2017}
|
|
||||||
}
|
|
||||||
|
|
||||||
2. DB:
|
|
||||||
@article{liao2019real,
|
|
||||||
title={Real-time Scene Text Detection with Differentiable Binarization},
|
|
||||||
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
|
||||||
journal={arXiv preprint arXiv:1911.08947},
|
|
||||||
year={2019}
|
|
||||||
}
|
|
||||||
|
|
||||||
3. DTRB:
|
|
||||||
@inproceedings{baek2019wrong,
|
|
||||||
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
|
|
||||||
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
|
|
||||||
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
|
||||||
pages={4715--4723},
|
|
||||||
year={2019}
|
|
||||||
}
|
|
||||||
|
|
||||||
4. SAST:
|
|
||||||
@inproceedings{wang2019single,
|
|
||||||
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
|
|
||||||
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
|
|
||||||
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
|
|
||||||
pages={1277--1285},
|
|
||||||
year={2019}
|
|
||||||
}
|
|
||||||
|
|
||||||
5. SRN:
|
|
||||||
@article{yu2020towards,
|
|
||||||
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
|
|
||||||
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
|
|
||||||
journal={arXiv preprint arXiv:2003.12294},
|
|
||||||
year={2020}
|
|
||||||
}
|
|
||||||
|
|
||||||
6. end2end-psl:
|
|
||||||
@inproceedings{sun2019chinese,
|
|
||||||
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
|
|
||||||
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
|
|
||||||
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
|
||||||
pages={9086--9095},
|
|
||||||
year={2019}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## 许可证书
|
## 许可证书
|
||||||
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
|
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
|
||||||
|
|
||||||
|
<a name="贡献代码"></a>
|
||||||
## 贡献代码
|
## 贡献代码
|
||||||
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
|
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,81 @@
|
||||||
|
|
||||||
|
# 中文OCR模型快速开始
|
||||||
|
|
||||||
|
## 1.环境配置
|
||||||
|
|
||||||
|
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
|
||||||
|
|
||||||
|
## 2.inference模型下载
|
||||||
|
|
||||||
|
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|
||||||
|
|-|-|-|-|-|
|
||||||
|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|
||||||
|
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
|
||||||
|
|
||||||
|
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*
|
||||||
|
|
||||||
|
复制上表中的检测和识别的`inference模型`下载地址,并解压
|
||||||
|
|
||||||
|
```
|
||||||
|
mkdir inference && cd inference
|
||||||
|
# 下载检测模型并解压
|
||||||
|
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
|
||||||
|
# 下载识别模型并解压
|
||||||
|
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
|
||||||
|
cd ..
|
||||||
|
```
|
||||||
|
|
||||||
|
以超轻量级模型为例:
|
||||||
|
|
||||||
|
```
|
||||||
|
mkdir inference && cd inference
|
||||||
|
# 下载超轻量级中文OCR模型的检测模型并解压
|
||||||
|
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
|
||||||
|
# 下载超轻量级中文OCR模型的识别模型并解压
|
||||||
|
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
|
||||||
|
cd ..
|
||||||
|
```
|
||||||
|
|
||||||
|
解压完毕后应有如下文件结构:
|
||||||
|
|
||||||
|
```
|
||||||
|
|-inference
|
||||||
|
|-ch_rec_mv3_crnn
|
||||||
|
|- model
|
||||||
|
|- params
|
||||||
|
|-ch_det_mv3_db
|
||||||
|
|- model
|
||||||
|
|- params
|
||||||
|
...
|
||||||
|
```
|
||||||
|
|
||||||
|
## 3.单张图像或者图像集合预测
|
||||||
|
|
||||||
|
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
|
||||||
|
|
||||||
|
```bash
|
||||||
|
|
||||||
|
# 预测image_dir指定的单张图像
|
||||||
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
|
||||||
|
|
||||||
|
# 预测image_dir指定的图像集合
|
||||||
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
|
||||||
|
|
||||||
|
# 如果想使用CPU进行预测,需设置use_gpu参数为False
|
||||||
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
|
||||||
|
```
|
||||||
|
|
||||||
|
通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
|
||||||
|
```
|
||||||
|
# 预测image_dir指定的单张图像
|
||||||
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
|
||||||
|
```
|
||||||
|
|
||||||
|
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
|
||||||
|
|
||||||
|
```
|
||||||
|
# 预测image_dir指定的单张图像
|
||||||
|
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
|
||||||
|
```
|
||||||
|
|
||||||
|
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./inference.md)。
|
|
@ -0,0 +1,55 @@
|
||||||
|
# 参考文献
|
||||||
|
|
||||||
|
```
|
||||||
|
1. EAST:
|
||||||
|
@inproceedings{zhou2017east,
|
||||||
|
title={EAST: an efficient and accurate scene text detector},
|
||||||
|
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
|
||||||
|
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
|
||||||
|
pages={5551--5560},
|
||||||
|
year={2017}
|
||||||
|
}
|
||||||
|
|
||||||
|
2. DB:
|
||||||
|
@article{liao2019real,
|
||||||
|
title={Real-time Scene Text Detection with Differentiable Binarization},
|
||||||
|
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
|
||||||
|
journal={arXiv preprint arXiv:1911.08947},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
|
||||||
|
3. DTRB:
|
||||||
|
@inproceedings{baek2019wrong,
|
||||||
|
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
|
||||||
|
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
|
||||||
|
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
||||||
|
pages={4715--4723},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
|
||||||
|
4. SAST:
|
||||||
|
@inproceedings{wang2019single,
|
||||||
|
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
|
||||||
|
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
|
||||||
|
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
|
||||||
|
pages={1277--1285},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
|
||||||
|
5. SRN:
|
||||||
|
@article{yu2020towards,
|
||||||
|
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
|
||||||
|
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
|
||||||
|
journal={arXiv preprint arXiv:2003.12294},
|
||||||
|
year={2020}
|
||||||
|
}
|
||||||
|
|
||||||
|
6. end2end-psl:
|
||||||
|
@inproceedings{sun2019chinese,
|
||||||
|
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
|
||||||
|
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
|
||||||
|
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
|
||||||
|
pages={9086--9095},
|
||||||
|
year={2019}
|
||||||
|
}
|
||||||
|
```
|
|
@ -0,0 +1,31 @@
|
||||||
|
# 效果展示
|
||||||
|
- [超轻量级中文OCR效果展示](#超轻量级中文OCR)
|
||||||
|
- [通用中文OCR效果展示](#通用中文OCR)
|
||||||
|
- [支持空格的中文OCR效果展示](#支持空格的中文OCR)
|
||||||
|
|
||||||
|
<a name="超轻量级中文OCR"></a>
|
||||||
|
## 超轻量级中文OCR效果展示
|
||||||
|
|
||||||
|
![](../imgs_results/1.jpg)
|
||||||
|
![](../imgs_results/7.jpg)
|
||||||
|
![](../imgs_results/12.jpg)
|
||||||
|
![](../imgs_results/4.jpg)
|
||||||
|
![](../imgs_results/6.jpg)
|
||||||
|
![](../imgs_results/9.jpg)
|
||||||
|
![](../imgs_results/16.png)
|
||||||
|
![](../imgs_results/22.jpg)
|
||||||
|
|
||||||
|
<a name="通用中文OCR"></a>
|
||||||
|
## 通用中文OCR效果展示
|
||||||
|
![](../imgs_results/chinese_db_crnn_server/11.jpg)
|
||||||
|
![](../imgs_results/chinese_db_crnn_server/2.jpg)
|
||||||
|
![](../imgs_results/chinese_db_crnn_server/8.jpg)
|
||||||
|
|
||||||
|
<a name="支持空格的中文OCR"></a>
|
||||||
|
## 支持空格的中文OCR效果展示
|
||||||
|
|
||||||
|
### 轻量级模型
|
||||||
|
![](../imgs_results/img_11.jpg)
|
||||||
|
|
||||||
|
### 通用模型
|
||||||
|
![](../imgs_results/chinese_db_crnn_server/en_paper.jpg)
|
Loading…
Reference in New Issue