updata readme

This commit is contained in:
dyning 2020-07-10 23:22:32 +08:00
parent 51e0dd4a0f
commit a3124696b0
5 changed files with 214 additions and 174 deletions

221
README.md
View File

@ -12,120 +12,35 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库助力
- [more](./doc/doc_ch/update.md) - [more](./doc/doc_ch/update.md)
## 特性 ## 特性
- 超轻量级中文OCR总模型仅8.6M - 超轻量级中文OCR模型总模型仅8.6M
- 单模型支持中英文数字组合识别、竖排文本识别、长文本识别 - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
- 检测模型DB4.1M+识别模型CRNN4.5M - 检测模型DB4.1M+识别模型CRNN4.5M
- 实用通用中文OCR模型
- 多种预测推理部署方案,包括服务部署和端测部署
- 多种文本检测训练算法EAST、DB - 多种文本检测训练算法EAST、DB
- 多种文本识别训练算法Rosetta、CRNN、STAR-Net、RARE - 多种文本识别训练算法Rosetta、CRNN、STAR-Net、RARE
- 可运行于Linux、Windows、MacOS等多种系统
<a name="支持的中文模型列表"></a> ## 快速体验
### 支持的中文模型列表:
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
超轻量级中文OCR在线体验地址https://www.paddlepaddle.org.cn/hub/scene/ocr
**也可以按如下教程快速体验中文OCR模型。**
## **超轻量级中文OCR以及通用中文OCR体验**
![](doc/imgs_results/11.jpg) ![](doc/imgs_results/11.jpg)
上图是超轻量级中文OCR模型效果展示更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)、 上图是超轻量级中文OCR模型效果展示更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)、
[通用中文OCR效果展示](#通用中文OCR效果展示)、[支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)。 [通用中文OCR效果展示](#通用中文OCR效果展示)、[支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)。
#### 1.环境配置 - 超轻量级中文OCR在线体验地址https://www.paddlepaddle.org.cn/hub/scene/ocr
请先参考[快速安装](./doc/doc_ch/installation.md)配置PaddleOCR运行环境。 - [中文OCR模型快速开始](./doc/doc_ch/quickstart.md)
#### 2.inference模型下载 ## 中文OCR模型列表
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下* |模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
## 算法介绍
#### 下载检测/识别模型并解压 ### 1.文本检测算法
复制[中文模型列表](#支持的中文模型列表) 中的检测和识别 `inference模型` 地址,下载并解压:
```
mkdir inference && cd inference
# 下载检测模型并解压
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# 下载识别模型并解压
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```
以超轻量级模型为例:
```
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
```
解压完毕后应有如下文件结构:
```
|-inference
|-ch_rec_mv3_crnn
|- model
|- params
|-ch_det_mv3_db
|- model
|- params
...
```
#### 3.单张图像或者图像集合预测
以下代码实现了文本检测、识别串联推理在执行预测时需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# 预测image_dir指定的图像集合
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# 如果想使用CPU进行预测需设置use_gpu参数为False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```
通用中文OCR模型的体验可以按照上述步骤下载相应的模型并且更新相关的参数示例如下
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型并且更新相关的参数示例如下
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/doc_ch/inference.md)。
## 文档教程
- [快速安装](./doc/doc_ch/installation.md)
- [文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
- [基于预测引擎推理](./doc/doc_ch/inference.md)
- [yml配置文件参数介绍](./doc/doc_ch/config_ch.md)
- [数据集](./doc/doc_ch/datasets.md)
- [FAQ](#FAQ)
- [联系我们](#欢迎加入PaddleOCR技术交流群)
- [参考文献](#参考文献)
## 文本检测算法
PaddleOCR开源的文本检测算法列表 PaddleOCR开源的文本检测算法列表
- [x] EAST([paper](https://arxiv.org/abs/1704.03155)) - [x] EAST([paper](https://arxiv.org/abs/1704.03155))
@ -151,7 +66,7 @@ PaddleOCR开源的文本检测算法列表
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)。 PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)。
## 文本识别算法 ### 2.文本识别算法
PaddleOCR开源的文本识别算法列表 PaddleOCR开源的文本识别算法列表
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717)) - [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
@ -181,34 +96,46 @@ PaddleOCR开源的文本识别算法列表
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)。 PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)。
## 端到端OCR算法 ### 3.端到端OCR算法
- [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon) - [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
<a name="超轻量级中文OCR效果展示"></a> ## 文档教程
## 超轻量级中文OCR效果展示 - [快速安装](./doc/doc_ch/installation.md)
- [中文OCR模型快速开始](./doc/doc_ch/quickstart.md)
- 模型训练/评估/预测
- [文本检测](./doc/doc_ch/detection.md)
- [文本识别](./doc/doc_ch/recognition.md)
- [yml参数配置文件介绍](./doc/doc_ch/config_ch.md)
- 预测部署
- [基于Python预测引擎推理](./doc/doc_ch/inference.md)
- 基于C++预测引擎推理(comming soon)
- [服务部署](./doc/doc_ch/serving.md)
- 端测部署(comming soon)
- [数据集](./doc/doc_ch/datasets.md)
- [FAQ](#FAQ)
- 效果展示
- [超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)
- [通用中文OCR效果展示](#通用中文OCR效果展示)
- [支持空格的中文OCR效果展示](#支持空格的中文OCR效果展示)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
- [贡献代码](#贡献代码)
## 效果展示
<a name="超轻量级中文OCR效果展示"></a>
### 1.超轻量级中文OCR效果展示
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg) ![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
<a name="通用中文OCR效果展示"></a> <a name="通用中文OCR效果展示"></a>
## 通用中文OCR效果展示 ### 2.通用中文OCR效果展示
![](doc/imgs_results/chinese_db_crnn_server/11.jpg) ![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)
<a name="支持空格的中文OCR效果展示"></a> <a name="支持空格的中文OCR效果展示"></a>
## 支持空格的中文OCR效果展示 ### 3.支持空格的中文OCR效果展示
### 轻量级模型
![](doc/imgs_results/img_11.jpg)
### 通用模型
![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg) ![](doc/imgs_results/chinese_db_crnn_server/en_paper.jpg)
<a name="FAQ"></a> <a name="FAQ"></a>
@ -232,65 +159,11 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识
扫描二维码或者加微信paddlehelp备注OCR小助手拉你进群 扫描二维码或者加微信paddlehelp备注OCR小助手拉你进群
<img src="./doc/paddlehelp.jpg" width = "200" height = "200" /> <img src="./doc/paddlehelp.jpg" width = "200" height = "200" />
<a name="参考文献"></a> <a name="许可证书"></a>
## 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```
## 许可证书 ## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。 本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。
<a name="贡献代码"></a>
## 贡献代码 ## 贡献代码
我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。 我们非常欢迎你为PaddleOCR贡献代码也十分感谢你的反馈。

81
doc/doc_ch/quickstart.md Normal file
View File

@ -0,0 +1,81 @@
# 中文OCR模型快速开始
## 1.环境配置
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
## 2.inference模型下载
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*
复制上表中的检测和识别的`inference模型`下载地址,并解压
```
mkdir inference && cd inference
# 下载检测模型并解压
wget {url/of/detection/inference_model} && tar xf {name/of/detection/inference_model/package}
# 下载识别模型并解压
wget {url/of/recognition/inference_model} && tar xf {name/of/recognition/inference_model/package}
cd ..
```
以超轻量级模型为例:
```
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
cd ..
```
解压完毕后应有如下文件结构:
```
|-inference
|-ch_rec_mv3_crnn
|- model
|- params
|-ch_det_mv3_db
|- model
|- params
...
```
## 3.单张图像或者图像集合预测
以下代码实现了文本检测、识别串联推理在执行预测时需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
```bash
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# 预测image_dir指定的图像集合
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
# 如果想使用CPU进行预测需设置use_gpu参数为False
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```
通用中文OCR模型的体验可以按照上述步骤下载相应的模型并且更新相关的参数示例如下
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
```
带空格的通用中文OCR模型的体验可以按照上述步骤下载相应的模型并且更新相关的参数示例如下
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs_en/img_12.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn_enhance/"
```
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./inference.md)。

55
doc/doc_ch/reference.md Normal file
View File

@ -0,0 +1,55 @@
# 参考文献
```
1. EAST:
@inproceedings{zhou2017east,
title={EAST: an efficient and accurate scene text detector},
author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={5551--5560},
year={2017}
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
}
3. DTRB:
@inproceedings{baek2019wrong,
title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={4715--4723},
year={2019}
}
4. SAST:
@inproceedings{wang2019single,
title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
pages={1277--1285},
year={2019}
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
year={2020}
}
6. end2end-psl:
@inproceedings{sun2019chinese,
title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9086--9095},
year={2019}
}
```

View File

@ -0,0 +1,31 @@
# 效果展示
- [超轻量级中文OCR效果展示](#超轻量级中文OCR)
- [通用中文OCR效果展示](#通用中文OCR)
- [支持空格的中文OCR效果展示](#支持空格的中文OCR)
<a name="超轻量级中文OCR"></a>
## 超轻量级中文OCR效果展示
![](../imgs_results/1.jpg)
![](../imgs_results/7.jpg)
![](../imgs_results/12.jpg)
![](../imgs_results/4.jpg)
![](../imgs_results/6.jpg)
![](../imgs_results/9.jpg)
![](../imgs_results/16.png)
![](../imgs_results/22.jpg)
<a name="通用中文OCR"></a>
## 通用中文OCR效果展示
![](../imgs_results/chinese_db_crnn_server/11.jpg)
![](../imgs_results/chinese_db_crnn_server/2.jpg)
![](../imgs_results/chinese_db_crnn_server/8.jpg)
<a name="支持空格的中文OCR"></a>
## 支持空格的中文OCR效果展示
### 轻量级模型
![](../imgs_results/img_11.jpg)
### 通用模型
![](../imgs_results/chinese_db_crnn_server/en_paper.jpg)