diff --git a/README.md b/README.md index 52dbf824..cf6abdb0 100644 --- a/README.md +++ b/README.md @@ -113,6 +113,12 @@ PaddleOCR开源的文本检测算法列表: |DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)| |DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)| +使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/datasets.md#1icdar2019-lsvt)街景数据集共3w张训练中文检测模型,相关配置和预训练文件如下: +|模型|骨干网络|配置文件|预训练模型| +|-|-|-|-| +|超轻量中文模型|MobileNetV3|det_mv3_db|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)| +|通用中文OCR模型|ResNet50_vd|det_r50_vd_db|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)| + * 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化 PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)。 @@ -139,6 +145,12 @@ PaddleOCR开源的文本识别算法列表: |RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)| |RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| +使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下: +|模型|骨干网络|配置文件|预训练模型| +|-|-|-|-| +|超轻量中文模型|MobileNetV3|rec_chinese_lite_train|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)| +|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)| + PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)。 ## 端到端OCR算法