dygraph first commit

This commit is contained in:
WenmuZhou 2020-10-13 17:13:33 +08:00
parent 10f7e5192d
commit aad3093a91
148 changed files with 5591 additions and 26826 deletions

View File

@ -1,22 +0,0 @@
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.db_process,DBProcessTrain
num_workers: 8
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.db_process,DBProcessTest
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
test_image_shape: [736, 1280]
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.db_process,DBProcessTest
infer_img:
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
test_image_shape: [736, 1280]
do_eval: True

View File

@ -1,23 +0,0 @@
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.east_process,EASTProcessTrain
num_workers: 8
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
background_ratio: 0.125
min_crop_side_ratio: 0.1
min_text_size: 10
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.east_process,EASTProcessTest
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.east_process,EASTProcessTest
infer_img:
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
do_eval: True

149
configs/det/det_mv3_db.yml Executable file → Normal file
View File

@ -1,54 +1,133 @@
Global:
algorithm: DB
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_db/
save_epoch_step: 200
save_model_dir: ./output/20201010/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
train_batch_size_per_card: 16
test_batch_size_per_card: 16
image_shape: [3, 640, 640]
reader_yml: ./configs/det/det_db_icdar15_reader.yml
pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
checkpoints:
save_res_path: ./output/det_db/predicts_db.txt
eval_batch_step: 8
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: /home/zhoujun20/pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
# name: Cosine
lr: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.det_db_head,DBHead
model_name: large
k: 50
inner_channels: 96
out_channels: 2
type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
Neck:
name: FPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
function: ppocr.modeling.losses.det_db_loss,DBLoss
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.db_postprocess,DBPostProcess
name: DBPostProcess
thresh: 0.3
box_thresh: 0.7
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 2.0
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
file_list:
- /home/zhoujun20/detection/train_icdar2015_label.txt # dataset1
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
- { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
- EastRandomCropData:
size: [ 640,640 ]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader将按照此顺序返回list
loader:
shuffle: True
drop_last: False
batch_size: 16
num_workers: 6
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
file_list:
- /home/zhoujun20/detection/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736,1280]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','shape','polys','ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size: 1 # must be 1
num_workers: 6

View File

@ -1,45 +0,0 @@
Global:
algorithm: EAST
use_gpu: true
epoch_num: 100000
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/det_east/
save_epoch_step: 200
eval_batch_step: [5000, 5000]
train_batch_size_per_card: 16
test_batch_size_per_card: 16
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_east_icdar15_reader.yml
pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
checkpoints:
save_res_path: ./output/det_east/predicts_east.txt
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.det_east_head,EASTHead
model_name: small
Loss:
function: ppocr.modeling.losses.det_east_loss,EASTLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.east_postprocess,EASTPostPocess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2

145
configs/det/det_r50_vd_db.yml Executable file → Normal file
View File

@ -1,53 +1,132 @@
Global:
algorithm: DB
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_db/
save_epoch_step: 200
eval_batch_step: [5000, 5000]
train_batch_size_per_card: 8
test_batch_size_per_card: 16
image_shape: [3, 640, 640]
reader_yml: ./configs/det/det_db_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
save_res_path: ./output/det_db/predicts_db.txt
checkpoints:
save_model_dir: ./output/20201010/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 8
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: False
pretrained_model: /home/zhoujun20/pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
# name: Cosine
lr: 0.001
# warmup_epoch: 0
regularizer:
name: 'L2'
factor: 0
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_db_head,DBHead
model_name: large
k: 50
inner_channels: 256
out_channels: 2
type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 50
Neck:
name: FPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
function: ppocr.modeling.losses.det_db_loss,DBLoss
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.db_postprocess,DBPostProcess
name: DBPostProcess
thresh: 0.3
box_thresh: 0.7
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DetMetric
main_indicator: hmean
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
file_list:
- /home/zhoujun20/detection/train_icdar2015_label.txt # dataset1
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [ -10,10 ] } }
- { 'type': Resize,'args': { 'size': [ 0.5,3 ] } }
- EastRandomCropData:
size: [ 640,640 ]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','threshold_map','threshold_mask','shrink_map','shrink_mask'] # dataloader将按照此顺序返回list
loader:
shuffle: True
drop_last: False
batch_size: 16
num_workers: 6
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/detection/
file_list:
- /home/zhoujun20/detection/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
image_shape: [736,1280]
- NormalizeImage:
scale: 1./255.
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: 'hwc'
- ToCHWImage:
- keepKeys:
keep_keys: ['image','shape','polys','ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size: 1 # must be 1
num_workers: 6

View File

@ -1,44 +0,0 @@
Global:
algorithm: EAST
use_gpu: true
epoch_num: 100000
log_smooth_window: 20
print_batch_step: 5
save_model_dir: ./output/det_east/
save_epoch_step: 200
eval_batch_step: [5000, 5000]
train_batch_size_per_card: 8
test_batch_size_per_card: 16
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_east_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
save_res_path: ./output/det_east/predicts_east.txt
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_east_head,EASTHead
model_name: large
Loss:
function: ppocr.modeling.losses.det_east_loss,EASTLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.east_postprocess,EASTPostPocess
score_thresh: 0.8
cover_thresh: 0.1
nms_thresh: 0.2

View File

@ -1,50 +0,0 @@
Global:
algorithm: SAST
use_gpu: true
epoch_num: 2000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_sast/
save_epoch_step: 20
eval_batch_step: 5000
train_batch_size_per_card: 8
test_batch_size_per_card: 8
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_sast_icdar15_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
save_res_path: ./output/det_sast/predicts_sast.txt
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd_sast,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_sast_head,SASTHead
model_name: large
only_fpn_up: False
# with_cab: False
with_cab: True
Loss:
function: ppocr.modeling.losses.det_sast_loss,SASTLoss
Optimizer:
function: ppocr.optimizer,RMSProp
base_lr: 0.001
decay:
function: piecewise_decay
boundaries: [30000, 50000, 80000, 100000, 150000]
decay_rate: 0.3
PostProcess:
function: ppocr.postprocess.sast_postprocess,SASTPostProcess
score_thresh: 0.5
sample_pts_num: 2
nms_thresh: 0.2
expand_scale: 1.0
shrink_ratio_of_width: 0.3

View File

@ -1,50 +0,0 @@
Global:
algorithm: SAST
use_gpu: true
epoch_num: 2000
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_sast/
save_epoch_step: 20
eval_batch_step: 5000
train_batch_size_per_card: 8
test_batch_size_per_card: 1
image_shape: [3, 512, 512]
reader_yml: ./configs/det/det_sast_totaltext_reader.yml
pretrain_weights: ./pretrain_models/ResNet50_vd_ssld_pretrained/
save_res_path: ./output/det_sast/predicts_sast.txt
checkpoints:
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_resnet_vd_sast,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.det_sast_head,SASTHead
model_name: large
only_fpn_up: False
# with_cab: False
with_cab: True
Loss:
function: ppocr.modeling.losses.det_sast_loss,SASTLoss
Optimizer:
function: ppocr.optimizer,RMSProp
base_lr: 0.001
decay:
function: piecewise_decay
boundaries: [30000, 50000, 80000, 100000, 150000]
decay_rate: 0.3
PostProcess:
function: ppocr.postprocess.sast_postprocess,SASTPostProcess
score_thresh: 0.5
sample_pts_num: 6
nms_thresh: 0.2
expand_scale: 1.2
shrink_ratio_of_width: 0.2

View File

@ -1,24 +0,0 @@
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.sast_process,SASTProcessTrain
num_workers: 8
img_set_dir: ./train_data/
label_file_path: [./train_data/icdar2013/train_label_json.txt, ./train_data/icdar2015/train_label_json.txt, ./train_data/icdar17_mlt_latin/train_label_json.txt, ./train_data/coco_text_icdar_4pts/train_label_json.txt]
data_ratio_list: [0.1, 0.45, 0.3, 0.15]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
img_set_dir: ./train_data/icdar2015/text_localization/
label_file_path: ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
max_side_len: 1536
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
infer_img: ./train_data/icdar2015/text_localization/ch4_test_images/img_11.jpg
max_side_len: 1536

View File

@ -1,24 +0,0 @@
TrainReader:
reader_function: ppocr.data.det.dataset_traversal,TrainReader
process_function: ppocr.data.det.sast_process,SASTProcessTrain
num_workers: 8
img_set_dir: ./train_data/
label_file_path: [./train_data/art_latin_icdar_14pt/train_no_tt_test/train_label_json.txt, ./train_data/total_text_icdar_14pt/train_label_json.txt]
data_ratio_list: [0.5, 0.5]
min_crop_side_ratio: 0.3
min_crop_size: 24
min_text_size: 4
max_text_size: 512
EvalReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
img_set_dir: ./train_data/
label_file_path: ./train_data/total_text_icdar_14pt/test_label_json.txt
max_side_len: 768
TestReader:
reader_function: ppocr.data.det.dataset_traversal,EvalTestReader
process_function: ppocr.data.det.sast_process,SASTProcessTest
infer_img: ./train_data/afs/total_text/Images/Test/img623.jpg
max_side_len: 768

View File

@ -1,12 +0,0 @@
TrainReader:
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
num_workers: 8
lmdb_sets_dir: ./train_data/data_lmdb_release/training/
EvalReader:
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
lmdb_sets_dir: ./train_data/data_lmdb_release/validation/
TestReader:
reader_function: ppocr.data.rec.dataset_traversal,LMDBReader
lmdb_sets_dir: ./train_data/data_lmdb_release/evaluation/

View File

@ -1,45 +0,0 @@
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 3000
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_CRNN
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 128
test_batch_size_per_card: 128
image_shape: [3, 32, 320]
max_text_length: 25
character_type: ch
character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
loss_type: ctc
distort: false
use_space_char: false
reader_yml: ./configs/rec/rec_chinese_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.0005
beta1: 0.9
beta2: 0.999

View File

@ -1,46 +0,0 @@
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 3000
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_CRNN
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 320]
max_text_length: 25
character_type: ch
character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
loss_type: ctc
distort: false
use_space_char: false
reader_yml: ./configs/rec/rec_chinese_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: small
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 48
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.0005
beta1: 0.9
beta2: 0.999

View File

@ -1,13 +0,0 @@
TrainReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
num_workers: 8
img_set_dir: ./train_data
label_file_path: ./train_data/rec_gt_train.txt
EvalReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
img_set_dir: ./train_data
label_file_path: ./train_data/rec_gt_test.txt
TestReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader

View File

@ -1,13 +0,0 @@
TrainReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
num_workers: 8
img_set_dir: ./train_data/ic15_data
label_file_path: ./train_data/ic15_data/rec_gt_train.txt
EvalReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader
img_set_dir: ./train_data/ic15_data
label_file_path: ./train_data/ic15_data/rec_gt_test.txt
TestReader:
reader_function: ppocr.data.rec.dataset_traversal,SimpleReader

View File

@ -1,49 +0,0 @@
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 1000
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_CRNN
save_epoch_step: 300
eval_batch_step: 500
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
distort: true
debug: false
reader_yml: ./configs/rec/rec_icdar15_reader.yml
pretrain_weights: ./pretrain_models/rec_mv3_none_bilstm_ctc/best_accuracy
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.0005
beta1: 0.9
beta2: 0.999
decay:
function: cosine_decay
step_each_epoch: 20
total_epoch: 1000

133
configs/rec/rec_mv3_none_bilstm_ctc.yml Executable file → Normal file
View File

@ -1,43 +1,108 @@
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 72
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_CRNN
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_model_dir: ./output/rec/test/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints: #output/rec/rec_crnn/best_accuracy
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
name: Cosine
lr: 0.001
warmup_epoch: 4
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: small
small_stride: [ 1, 2, 2, 2 ]
Neck:
name: SequenceEncoder
encoder_type: fc
hidden_size: 96
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/rec
file_list:
- /home/zhoujun20/rec/real_data.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 6
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/rec
file_list:
- /home/zhoujun20/rec/label_val_all.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 6

View File

@ -0,0 +1,106 @@
Global:
use_gpu: true
epoch_num: 500
log_smooth_window: 20
print_batch_step: 1
save_model_dir: ./output/rec/test/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 1016
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints: #output/rec/rec_crnn/best_accuracy
save_inference_dir:
use_visualdl: True
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: /home/zhoujun20/rec/lmdb/dict.txt
character_type: 'ch'
use_space_char: True
infer_mode: False
use_tps: False
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
name: Cosine
lr: 0.0005
warmup_epoch: 1
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: small
small_stride: [ 1, 2, 2, 2 ]
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 48
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: LMDBDateSet
file_list:
- /home/zhoujun20/rec/lmdb/train # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 6
EVAL:
dataset:
name: LMDBDateSet
file_list:
- /home/zhoujun20/rec/lmdb/val
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 6

View File

@ -1,41 +0,0 @@
Global:
algorithm: Rosetta
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_Rosetta
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: reshape
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999

View File

@ -1,54 +0,0 @@
Global:
algorithm: RARE
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_RARE
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: attention
tps: true
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: small
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_attention_head,AttentionPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Attention:
decoder_size: 96
word_vector_dim: 96
Loss:
function: ppocr.modeling.losses.rec_attention_loss,AttentionLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999

View File

@ -1,51 +0,0 @@
Global:
algorithm: STARNet
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_STARNet
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
tps: true
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: small
Backbone:
function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 96
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999

131
configs/rec/rec_r34_vd_none_bilstm_ctc.yml Executable file → Normal file
View File

@ -1,43 +1,106 @@
Global:
algorithm: CRNN
use_gpu: true
epoch_num: 72
use_gpu: false
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_CRNN
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_model_dir: ./output/rec/test/
save_epoch_step: 500
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: 127
# if pretrained_model is saved in static mode, load_static_weights must set to True
load_static_weights: True
cal_metric_during_train: True
pretrained_model:
checkpoints: #output/rec/rec_crnn/best_accuracy
save_inference_dir:
infer_img:
use_visualdl: False
infer_img: doc/imgs_words/ch/word_1.jpg
# for data or label process
max_text_length: 80
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
character_type: 'ch'
use_space_char: False
infer_mode: False
use_tps: False
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
name: Adam
beta1: 0.9
beta2: 0.999
learning_rate:
name: Cosine
lr: 0.001
warmup_epoch: 4
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet
layers: 200
Neck:
name: SequenceEncoder
encoder_type: fc
hidden_size: 96
Head:
name: CTC
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
TRAIN:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/rec
file_list:
- /home/zhoujun20/rec/real_data.txt # dataset1
ratio_list: [ 0.4,0.6 ]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecAug:
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
batch_size: 256
shuffle: True
drop_last: True
num_workers: 6
EVAL:
dataset:
name: SimpleDataSet
data_dir: /home/zhoujun20/rec
file_list:
- /home/zhoujun20/rec/label_val_all.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [ 3,32,320 ]
- keepKeys:
keep_keys: [ 'image','label','length' ] # dataloader将按照此顺序返回list
loader:
shuffle: False
drop_last: False
batch_size: 256
num_workers: 6

View File

@ -1,40 +0,0 @@
Global:
algorithm: Rosetta
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_Rosetta
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: reshape
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999

View File

@ -1,53 +0,0 @@
Global:
algorithm: RARE
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_RARE
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: attention
tps: true
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: large
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_attention_head,AttentionPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Attention:
decoder_size: 128
word_vector_dim: 128
Loss:
function: ppocr.modeling.losses.rec_attention_loss,AttentionLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999

View File

@ -1,50 +0,0 @@
Global:
algorithm: STARNet
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_STARNet
save_epoch_step: 3
eval_batch_step: 2000
train_batch_size_per_card: 256
test_batch_size_per_card: 256
image_shape: [3, 32, 100]
max_text_length: 25
character_type: en
loss_type: ctc
tps: true
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
TPS:
function: ppocr.modeling.stns.tps,TPS
num_fiducial: 20
loc_lr: 0.1
model_name: large
Backbone:
function: ppocr.modeling.backbones.rec_resnet_vd,ResNet
layers: 34
Head:
function: ppocr.modeling.heads.rec_ctc_head,CTCPredict
encoder_type: rnn
SeqRNN:
hidden_size: 256
Loss:
function: ppocr.modeling.losses.rec_ctc_loss,CTCLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999

View File

@ -1,49 +0,0 @@
Global:
algorithm: SRN
use_gpu: true
epoch_num: 72
log_smooth_window: 20
print_batch_step: 10
save_model_dir: output/rec_pvam_withrotate
save_epoch_step: 1
eval_batch_step: 8000
train_batch_size_per_card: 64
test_batch_size_per_card: 1
image_shape: [1, 64, 256]
max_text_length: 25
character_type: en
loss_type: srn
num_heads: 8
average_window: 0.15
max_average_window: 15625
min_average_window: 10000
reader_yml: ./configs/rec/rec_benchmark_reader.yml
pretrain_weights:
checkpoints:
save_inference_dir:
infer_img:
Architecture:
function: ppocr.modeling.architectures.rec_model,RecModel
Backbone:
function: ppocr.modeling.backbones.rec_resnet_fpn,ResNet
layers: 50
Head:
function: ppocr.modeling.heads.rec_srn_all_head,SRNPredict
encoder_type: rnn
num_encoder_TUs: 2
num_decoder_TUs: 4
hidden_dims: 512
SeqRNN:
hidden_size: 256
Loss:
function: ppocr.modeling.losses.rec_srn_loss,SRNLoss
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.0001
beta1: 0.9
beta2: 0.999

111
ppocr/data/__init__.py Executable file → Normal file
View File

@ -11,3 +11,114 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import os
import sys
import numpy as np
import paddle
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
import copy
from paddle.io import DataLoader, DistributedBatchSampler, BatchSampler
import paddle.distributed as dist
from ppocr.data.imaug import transform, create_operators
__all__ = ['build_dataloader', 'transform', 'create_operators']
def build_dataset(config, global_config):
from ppocr.data.dataset import SimpleDataSet, LMDBDateSet
support_dict = ['SimpleDataSet', 'LMDBDateSet']
module_name = config.pop('name')
assert module_name in support_dict, Exception(
'DataSet only support {}'.format(support_dict))
dataset = eval(module_name)(config, global_config)
return dataset
def build_dataloader(config, device, distributed=False, global_config=None):
from ppocr.data.dataset import BatchBalancedDataLoader
config = copy.deepcopy(config)
dataset_config = config['dataset']
_dataset_list = []
file_list = dataset_config.pop('file_list')
if len(file_list) == 1:
ratio_list = [1.0]
else:
ratio_list = dataset_config.pop('ratio_list')
for file in file_list:
dataset_config['file_list'] = file
_dataset = build_dataset(dataset_config, global_config)
_dataset_list.append(_dataset)
data_loader = BatchBalancedDataLoader(_dataset_list, ratio_list,
distributed, device, config['loader'])
return data_loader, _dataset.info_dict
def test_loader():
import time
from tools.program import load_config, ArgsParser
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
place = paddle.CPUPlace()
paddle.disable_static(place)
import time
data_loader, _ = build_dataloader(
config['TRAIN'], place, global_config=config['Global'])
start = time.time()
print(len(data_loader))
for epoch in range(1):
print('epoch {} ****************'.format(epoch))
for i, batch in enumerate(data_loader):
if i > len(data_loader):
break
t = time.time() - start
start = time.time()
print('{}, batch : {} ,time {}'.format(i, len(batch[0]), t))
continue
import matplotlib.pyplot as plt
from matplotlib import pyplot as plt
import cv2
fig = plt.figure()
# # cv2.imwrite('img.jpg',batch[0].numpy()[0].transpose((1,2,0)))
# # cv2.imwrite('bmap.jpg',batch[1].numpy()[0])
# # cv2.imwrite('bmask.jpg',batch[2].numpy()[0])
# # cv2.imwrite('smap.jpg',batch[3].numpy()[0])
# # cv2.imwrite('smask.jpg',batch[4].numpy()[0])
plt.title('img')
plt.imshow(batch[0].numpy()[0].transpose((1, 2, 0)))
# plt.figure()
# plt.title('bmap')
# plt.imshow(batch[1].numpy()[0],cmap='Greys')
# plt.figure()
# plt.title('bmask')
# plt.imshow(batch[2].numpy()[0],cmap='Greys')
# plt.figure()
# plt.title('smap')
# plt.imshow(batch[3].numpy()[0],cmap='Greys')
# plt.figure()
# plt.title('smask')
# plt.imshow(batch[4].numpy()[0],cmap='Greys')
# plt.show()
# break
if __name__ == '__main__':
test_loader()

300
ppocr/data/dataset.py Normal file
View File

@ -0,0 +1,300 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import numpy as np
import os
import lmdb
import random
import signal
import paddle
from paddle.io import Dataset, DataLoader, DistributedBatchSampler, BatchSampler
from .imaug import transform, create_operators
from ppocr.utils.logging import get_logger
def term_mp(sig_num, frame):
""" kill all child processes
"""
pid = os.getpid()
pgid = os.getpgid(os.getpid())
print("main proc {} exit, kill process group " "{}".format(pid, pgid))
os.killpg(pgid, signal.SIGKILL)
signal.signal(signal.SIGINT, term_mp)
signal.signal(signal.SIGTERM, term_mp)
class ModeException(Exception):
"""
ModeException
"""
def __init__(self, message='', mode=''):
message += "\nOnly the following 3 modes are supported: " \
"train, valid, test. Given mode is {}".format(mode)
super(ModeException, self).__init__(message)
class SampleNumException(Exception):
"""
SampleNumException
"""
def __init__(self, message='', sample_num=0, batch_size=1):
message += "\nError: The number of the whole data ({}) " \
"is smaller than the batch_size ({}), and drop_last " \
"is turnning on, so nothing will feed in program, " \
"Terminated now. Please reset batch_size to a smaller " \
"number or feed more data!".format(sample_num, batch_size)
super(SampleNumException, self).__init__(message)
def get_file_list(file_list, data_dir, delimiter='\t'):
"""
read label list from file and shuffle the list
Args:
params(dict):
"""
if isinstance(file_list, str):
file_list = [file_list]
data_source_list = []
for file in file_list:
with open(file) as f:
full_lines = [line.strip() for line in f]
for line in full_lines:
try:
img_path, label = line.split(delimiter)
except:
logger = get_logger()
logger.warning('label error in {}'.format(line))
img_path = os.path.join(data_dir, img_path)
data = {'img_path': img_path, 'label': label}
data_source_list.append(data)
return data_source_list
class LMDBDateSet(Dataset):
def __init__(self, config, global_config):
super(LMDBDateSet, self).__init__()
self.data_list = self.load_lmdb_dataset(
config['file_list'], global_config['max_text_length'])
random.shuffle(self.data_list)
self.ops = create_operators(config['transforms'], global_config)
# for rec
character = ''
for op in self.ops:
if hasattr(op, 'character'):
character = getattr(op, 'character')
self.info_dict = {'character': character}
def load_lmdb_dataset(self, data_dir, max_text_length):
self.env = lmdb.open(
data_dir,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False)
if not self.env:
print('cannot create lmdb from %s' % (data_dir))
exit(0)
filtered_index_list = []
with self.env.begin(write=False) as txn:
nSamples = int(txn.get('num-samples'.encode()))
self.nSamples = nSamples
for index in range(self.nSamples):
index += 1 # lmdb starts with 1
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key).decode('utf-8')
if len(label) > max_text_length:
# print(f'The length of the label is longer than max_length: length
# {len(label)}, {label} in dataset {self.root}')
continue
# By default, images containing characters which are not in opt.character are filtered.
# You can add [UNK] token to `opt.character` in utils.py instead of this filtering.
filtered_index_list.append(index)
return filtered_index_list
def print_lmdb_sets_info(self, lmdb_sets):
lmdb_info_strs = []
for dataset_idx in range(len(lmdb_sets)):
tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
lmdb_sets[dataset_idx]['num_samples'])
lmdb_info_strs.append(tmp_str)
lmdb_info_strs = ''.join(lmdb_info_strs)
logger = get_logger()
logger.info("DataSummary:" + lmdb_info_strs)
return
def __getitem__(self, idx):
idx = self.data_list[idx]
with self.env.begin(write=False) as txn:
label_key = 'label-%09d'.encode() % idx
label = txn.get(label_key)
if label is not None:
label = label.decode('utf-8')
img_key = 'image-%09d'.encode() % idx
imgbuf = txn.get(img_key)
data = {'image': imgbuf, 'label': label}
outs = transform(data, self.ops)
else:
outs = None
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return len(self.data_list)
class SimpleDataSet(Dataset):
def __init__(self, config, global_config):
super(SimpleDataSet, self).__init__()
delimiter = config.get('delimiter', '\t')
self.data_list = get_file_list(config['file_list'], config['data_dir'],
delimiter)
random.shuffle(self.data_list)
self.ops = create_operators(config['transforms'], global_config)
# for rec
character = ''
for op in self.ops:
if hasattr(op, 'character'):
character = getattr(op, 'character')
self.info_dict = {'character': character}
def __getitem__(self, idx):
data = copy.deepcopy(self.data_list[idx])
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
outs = transform(data, self.ops)
if outs is None:
return self.__getitem__(np.random.randint(self.__len__()))
return outs
def __len__(self):
return len(self.data_list)
class BatchBalancedDataLoader(object):
def __init__(self,
dataset_list: list,
ratio_list: list,
distributed,
device,
loader_args: dict):
"""
对datasetlist里的dataset按照ratio_list里对应的比例组合似的每个batch里的数据按按照比例采样的
:param dataset_list: 数据集列表
:param ratio_list: 比例列表
:param loader_args: dataloader的配置
"""
assert sum(ratio_list) == 1 and len(dataset_list) == len(ratio_list)
self.dataset_len = 0
self.data_loader_list = []
self.dataloader_iter_list = []
all_batch_size = loader_args.pop('batch_size')
batch_size_list = list(
map(int, [max(1.0, all_batch_size * x) for x in ratio_list]))
remain_num = all_batch_size - sum(batch_size_list)
batch_size_list[np.argmax(ratio_list)] += remain_num
for _dataset, _batch_size in zip(dataset_list, batch_size_list):
if distributed:
batch_sampler_class = DistributedBatchSampler
else:
batch_sampler_class = BatchSampler
batch_sampler = batch_sampler_class(
dataset=_dataset,
batch_size=_batch_size,
shuffle=loader_args['shuffle'],
drop_last=loader_args['drop_last'], )
_data_loader = DataLoader(
dataset=_dataset,
batch_sampler=batch_sampler,
places=device,
num_workers=loader_args['num_workers'],
return_list=True, )
self.data_loader_list.append(_data_loader)
self.dataloader_iter_list.append(iter(_data_loader))
self.dataset_len += len(_dataset)
def __iter__(self):
return self
def __len__(self):
return min([len(x) for x in self.data_loader_list])
def __next__(self):
batch = []
for i, data_loader_iter in enumerate(self.dataloader_iter_list):
try:
_batch_i = next(data_loader_iter)
batch.append(_batch_i)
except StopIteration:
self.dataloader_iter_list[i] = iter(self.data_loader_list[i])
_batch_i = next(self.dataloader_iter_list[i])
batch.append(_batch_i)
except ValueError:
pass
if len(batch) > 0:
batch_list = []
batch_item_size = len(batch[0])
for i in range(batch_item_size):
cur_item_list = [batch_i[i] for batch_i in batch]
batch_list.append(paddle.concat(cur_item_list, axis=0))
else:
batch_list = batch[0]
return batch_list
def fill_batch(batch):
"""
2020.09.08 The current paddle version only supports returning data with the same length.
Therefore, fill in the batches with inconsistent lengths.
this method is currently only useful for text detection
"""
keys = list(range(len(batch[0])))
v_max_len_dict = {}
for k in keys:
v_max_len_dict[k] = max([len(item[k]) for item in batch])
for item in batch:
length = []
for k in keys:
v = item[k]
length.append(len(v))
assert isinstance(v, np.ndarray)
if len(v) == v_max_len_dict[k]:
continue
try:
tmp_shape = [v_max_len_dict[k] - len(v)] + list(v[0].shape)
except:
a = 1
tmp_array = np.zeros(tmp_shape, dtype=v[0].dtype)
new_array = np.concatenate([v, tmp_array])
item[k] = new_array
item.append(length)
return batch

View File

@ -1,47 +0,0 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import random
import cv2
import math
import imgaug
import imgaug.augmenters as iaa
def AugmentData(data):
img = data['image']
shape = img.shape
aug = iaa.Sequential(
[iaa.Fliplr(0.5), iaa.Affine(rotate=(-10, 10)), iaa.Resize(
(0.5, 3))]).to_deterministic()
def may_augment_annotation(aug, data, shape):
if aug is None:
return data
line_polys = []
for poly in data['polys']:
new_poly = may_augment_poly(aug, shape, poly)
line_polys.append(new_poly)
data['polys'] = np.array(line_polys)
return data
def may_augment_poly(aug, img_shape, poly):
keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly]
keypoints = aug.augment_keypoints(
[imgaug.KeypointsOnImage(
keypoints, shape=img_shape)])[0].keypoints
poly = [(p.x, p.y) for p in keypoints]
return poly
img_aug = aug.augment_image(img)
data['image'] = img_aug
data = may_augment_annotation(aug, data, shape)
return data

View File

@ -1,167 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import math
import random
import functools
import numpy as np
import cv2
import string
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from ppocr.utils.utility import create_module
from ppocr.utils.utility import get_image_file_list
import time
class TrainReader(object):
def __init__(self, params):
self.num_workers = params['num_workers']
self.label_file_path = params['label_file_path']
print(self.label_file_path)
self.use_mul_data = False
if isinstance(self.label_file_path, list):
self.use_mul_data = True
self.data_ratio_list = params['data_ratio_list']
self.batch_size = params['train_batch_size_per_card']
assert 'process_function' in params,\
"absence process_function in Reader"
self.process = create_module(params['process_function'])(params)
def __call__(self, process_id):
def sample_iter_reader():
with open(self.label_file_path, "rb") as fin:
label_infor_list = fin.readlines()
img_num = len(label_infor_list)
img_id_list = list(range(img_num))
random.shuffle(img_id_list)
if sys.platform == "win32" and self.num_workers != 1:
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
for img_id in range(process_id, img_num, self.num_workers):
label_infor = label_infor_list[img_id_list[img_id]]
outs = self.process(label_infor)
if outs is None:
continue
yield outs
def sample_iter_reader_mul():
batch_size = 1000
data_source_list = self.label_file_path
batch_size_list = list(map(int, [max(1.0, batch_size * x) for x in self.data_ratio_list]))
print(self.data_ratio_list, batch_size_list)
data_filename_list, data_size_list, fetch_record_list = [], [], []
for data_source in data_source_list:
image_files = open(data_source, "rb").readlines()
random.shuffle(image_files)
data_filename_list.append(image_files)
data_size_list.append(len(image_files))
fetch_record_list.append(0)
image_batch = []
# get a batch of img_fns and poly_fns
for i in range(0, len(batch_size_list)):
bs = batch_size_list[i]
ds = data_size_list[i]
image_names = data_filename_list[i]
fetch_record = fetch_record_list[i]
data_path = data_source_list[i]
for j in range(fetch_record, fetch_record + bs):
index = j % ds
image_batch.append(image_names[index])
if (fetch_record + bs) > ds:
fetch_record_list[i] = 0
random.shuffle(data_filename_list[i])
else:
fetch_record_list[i] = fetch_record + bs
if sys.platform == "win32":
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
for label_infor in image_batch:
outs = self.process(label_infor)
if outs is None:
continue
yield outs
def batch_iter_reader():
batch_outs = []
if self.use_mul_data:
print("Sample date from multiple datasets!")
for outs in sample_iter_reader_mul():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
else:
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
return batch_iter_reader
class EvalTestReader(object):
def __init__(self, params):
self.params = params
assert 'process_function' in params,\
"absence process_function in EvalTestReader"
def __call__(self, mode):
process_function = create_module(self.params['process_function'])(
self.params)
batch_size = self.params['test_batch_size_per_card']
img_list = []
if mode != "test":
img_set_dir = self.params['img_set_dir']
img_name_list_path = self.params['label_file_path']
with open(img_name_list_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
img_name = line.decode().strip("\n").split("\t")[0]
img_path = os.path.join(img_set_dir, img_name)
img_list.append(img_path)
else:
img_path = self.params['infer_img']
img_list = get_image_file_list(img_path)
def batch_iter_reader():
batch_outs = []
for img_path in img_list:
img = cv2.imread(img_path)
if img is None:
logger.info("{} does not exist!".format(img_path))
continue
elif len(list(img.shape)) == 2 or img.shape[2] == 1:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
outs = process_function(img)
outs.append(img_path)
batch_outs.append(outs)
if len(batch_outs) == batch_size:
yield batch_outs
batch_outs = []
if len(batch_outs) != 0:
yield batch_outs
return batch_iter_reader

View File

@ -1,216 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import cv2
import numpy as np
import json
import sys
from ppocr.utils.utility import initial_logger, check_and_read_gif
logger = initial_logger()
from .data_augment import AugmentData
from .random_crop_data import RandomCropData
from .make_shrink_map import MakeShrinkMap
from .make_border_map import MakeBorderMap
class DBProcessTrain(object):
"""
DB pre-process for Train mode
"""
def __init__(self, params):
self.img_set_dir = params['img_set_dir']
self.image_shape = params['image_shape']
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def make_data_dict(self, imgvalue, entry):
boxes = []
texts = []
ignores = []
for rect in entry:
points = rect['points']
transcription = rect['transcription']
try:
box = self.order_points_clockwise(
np.array(points).reshape(-1, 2))
if cv2.contourArea(box) > 0:
boxes.append(box)
texts.append(transcription)
ignores.append(transcription in ['*', '###'])
except:
print('load label failed!')
data = {
'image': imgvalue,
'shape': [imgvalue.shape[0], imgvalue.shape[1]],
'polys': np.array(boxes),
'texts': texts,
'ignore_tags': ignores,
}
return data
def NormalizeImage(self, data):
im = data['image']
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im.astype(np.float32, copy=False)
im = im / 255
im -= img_mean
im /= img_std
channel_swap = (2, 0, 1)
im = im.transpose(channel_swap)
data['image'] = im
return data
def FilterKeys(self, data):
filter_keys = ['polys', 'texts', 'ignore_tags', 'shape']
for key in filter_keys:
if key in data:
del data[key]
return data
def convert_label_infor(self, label_infor):
label_infor = label_infor.decode()
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
substr = label_infor.strip("\n").split("\t")
img_path = self.img_set_dir + substr[0]
label = json.loads(substr[1])
return img_path, label
def __call__(self, label_infor):
img_path, gt_label = self.convert_label_infor(label_infor)
imgvalue, flag = check_and_read_gif(img_path)
if not flag:
imgvalue = cv2.imread(img_path)
if imgvalue is None:
logger.info("{} does not exist!".format(img_path))
return None
if len(list(imgvalue.shape)) == 2 or imgvalue.shape[2] == 1:
imgvalue = cv2.cvtColor(imgvalue, cv2.COLOR_GRAY2BGR)
data = self.make_data_dict(imgvalue, gt_label)
data = AugmentData(data)
data = RandomCropData(data, self.image_shape[1:])
data = MakeShrinkMap(data)
data = MakeBorderMap(data)
data = self.NormalizeImage(data)
data = self.FilterKeys(data)
return data['image'], data['shrink_map'], data['shrink_mask'], data[
'threshold_map'], data['threshold_mask']
class DBProcessTest(object):
"""
DB pre-process for Test mode
"""
def __init__(self, params):
super(DBProcessTest, self).__init__()
self.resize_type = 0
if 'test_image_shape' in params:
self.image_shape = params['test_image_shape']
# print(self.image_shape)
self.resize_type = 1
if 'max_side_len' in params:
self.max_side_len = params['max_side_len']
else:
self.max_side_len = 2400
def resize_image_type0(self, im):
"""
resize image to a size multiple of 32 which is required by the network
args:
img(array): array with shape [h, w, c]
return(tuple):
img, (ratio_h, ratio_w)
"""
max_side_len = self.max_side_len
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
if max(resize_h, resize_w) > max_side_len:
if resize_h > resize_w:
ratio = float(max_side_len) / resize_h
else:
ratio = float(max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
if resize_h % 32 == 0:
resize_h = resize_h
elif resize_h // 32 <= 1:
resize_h = 32
else:
resize_h = (resize_h // 32 - 1) * 32
if resize_w % 32 == 0:
resize_w = resize_w
elif resize_w // 32 <= 1:
resize_w = 32
else:
resize_w = (resize_w // 32 - 1) * 32
try:
if int(resize_w) <= 0 or int(resize_h) <= 0:
return None, (None, None)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
except:
print(im.shape, resize_w, resize_h)
sys.exit(0)
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def resize_image_type1(self, im):
resize_h, resize_w = self.image_shape
ori_h, ori_w = im.shape[:2] # (h, w, c)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = float(resize_h) / ori_h
ratio_w = float(resize_w) / ori_w
return im, (ratio_h, ratio_w)
def normalize(self, im):
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im.astype(np.float32, copy=False)
im = im / 255
im[:, :, 0] -= img_mean[0]
im[:, :, 1] -= img_mean[1]
im[:, :, 2] -= img_mean[2]
im[:, :, 0] /= img_std[0]
im[:, :, 1] /= img_std[1]
im[:, :, 2] /= img_std[2]
channel_swap = (2, 0, 1)
im = im.transpose(channel_swap)
return im
def __call__(self, im):
if self.resize_type == 0:
im, (ratio_h, ratio_w) = self.resize_image_type0(im)
else:
im, (ratio_h, ratio_w) = self.resize_image_type1(im)
im = self.normalize(im)
im = im[np.newaxis, :]
return [im, (ratio_h, ratio_w)]

View File

@ -1,537 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import cv2
import numpy as np
import json
import sys
import os
class EASTProcessTrain(object):
def __init__(self, params):
self.img_set_dir = params['img_set_dir']
self.random_scale = np.array([0.5, 1, 2.0, 3.0])
self.background_ratio = params['background_ratio']
self.min_crop_side_ratio = params['min_crop_side_ratio']
image_shape = params['image_shape']
self.input_size = image_shape[1]
self.min_text_size = params['min_text_size']
def preprocess(self, im):
input_size = self.input_size
im_shape = im.shape
im_size_min = np.min(im_shape[0:2])
im_size_max = np.max(im_shape[0:2])
im_scale = float(input_size) / float(im_size_max)
im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale)
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im[:, :, ::-1].astype(np.float32)
im = im / 255
im -= img_mean
im /= img_std
new_h, new_w, _ = im.shape
im_padded = np.zeros((input_size, input_size, 3), dtype=np.float32)
im_padded[:new_h, :new_w, :] = im
im_padded = im_padded.transpose((2, 0, 1))
im_padded = im_padded[np.newaxis, :]
return im_padded, im_scale
def convert_label_infor(self, label_infor):
label_infor = label_infor.decode()
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
substr = label_infor.strip("\n").split("\t")
img_path = os.path.join(self.img_set_dir, substr[0])
label = json.loads(substr[1])
nBox = len(label)
wordBBs, txts, txt_tags = [], [], []
for bno in range(0, nBox):
wordBB = label[bno]['points']
txt = label[bno]['transcription']
wordBBs.append(wordBB)
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
wordBBs = np.array(wordBBs, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
return img_path, wordBBs, txt_tags, txts
def rotate_im_poly(self, im, text_polys):
"""
rotate image with 90 / 180 / 270 degre
"""
im_w, im_h = im.shape[1], im.shape[0]
dst_im = im.copy()
dst_polys = []
rand_degree_ratio = np.random.rand()
rand_degree_cnt = 1
if 0.333 < rand_degree_ratio < 0.666:
rand_degree_cnt = 2
elif rand_degree_ratio > 0.666:
rand_degree_cnt = 3
for i in range(rand_degree_cnt):
dst_im = np.rot90(dst_im)
rot_degree = -90 * rand_degree_cnt
rot_angle = rot_degree * math.pi / 180.0
n_poly = text_polys.shape[0]
cx, cy = 0.5 * im_w, 0.5 * im_h
ncx, ncy = 0.5 * dst_im.shape[1], 0.5 * dst_im.shape[0]
for i in range(n_poly):
wordBB = text_polys[i]
poly = []
for j in range(4):
sx, sy = wordBB[j][0], wordBB[j][1]
dx = math.cos(rot_angle) * (sx - cx)\
- math.sin(rot_angle) * (sy - cy) + ncx
dy = math.sin(rot_angle) * (sx - cx)\
+ math.cos(rot_angle) * (sy - cy) + ncy
poly.append([dx, dy])
dst_polys.append(poly)
dst_polys = np.array(dst_polys, dtype=np.float32)
return dst_im, dst_polys
def polygon_area(self, poly):
"""
compute area of a polygon
:param poly:
:return:
"""
edge = [(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])]
return np.sum(edge) / 2.
def check_and_validate_polys(self, polys, tags, img_height, img_width):
"""
check so that the text poly is in the same direction,
and also filter some invalid polygons
:param polys:
:param tags:
:return:
"""
h, w = img_height, img_width
if polys.shape[0] == 0:
return polys
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
validated_polys = []
validated_tags = []
for poly, tag in zip(polys, tags):
p_area = self.polygon_area(poly)
#invalid poly
if abs(p_area) < 1:
continue
if p_area > 0:
#'poly in wrong direction'
if not tag:
tag = True #reversed cases should be ignore
poly = poly[(0, 3, 2, 1), :]
validated_polys.append(poly)
validated_tags.append(tag)
return np.array(validated_polys), np.array(validated_tags)
def draw_img_polys(self, img, polys):
if len(img.shape) == 4:
img = np.squeeze(img, axis=0)
if img.shape[0] == 3:
img = img.transpose((1, 2, 0))
img[:, :, 2] += 123.68
img[:, :, 1] += 116.78
img[:, :, 0] += 103.94
cv2.imwrite("tmp.jpg", img)
img = cv2.imread("tmp.jpg")
for box in polys:
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(img, [box], True, color=(255, 255, 0), thickness=2)
import random
ino = random.randint(0, 100)
cv2.imwrite("tmp_%d.jpg" % ino, img)
return
def shrink_poly(self, poly, r):
"""
fit a poly inside the origin poly, maybe bugs here...
used for generate the score map
:param poly: the text poly
:param r: r in the paper
:return: the shrinked poly
"""
# shrink ratio
R = 0.3
# find the longer pair
dist0 = np.linalg.norm(poly[0] - poly[1])
dist1 = np.linalg.norm(poly[2] - poly[3])
dist2 = np.linalg.norm(poly[0] - poly[3])
dist3 = np.linalg.norm(poly[1] - poly[2])
if dist0 + dist1 > dist2 + dist3:
# first move (p0, p1), (p2, p3), then (p0, p3), (p1, p2)
## p0, p1
theta = np.arctan2((poly[1][1] - poly[0][1]),
(poly[1][0] - poly[0][0]))
poly[0][0] += R * r[0] * np.cos(theta)
poly[0][1] += R * r[0] * np.sin(theta)
poly[1][0] -= R * r[1] * np.cos(theta)
poly[1][1] -= R * r[1] * np.sin(theta)
## p2, p3
theta = np.arctan2((poly[2][1] - poly[3][1]),
(poly[2][0] - poly[3][0]))
poly[3][0] += R * r[3] * np.cos(theta)
poly[3][1] += R * r[3] * np.sin(theta)
poly[2][0] -= R * r[2] * np.cos(theta)
poly[2][1] -= R * r[2] * np.sin(theta)
## p0, p3
theta = np.arctan2((poly[3][0] - poly[0][0]),
(poly[3][1] - poly[0][1]))
poly[0][0] += R * r[0] * np.sin(theta)
poly[0][1] += R * r[0] * np.cos(theta)
poly[3][0] -= R * r[3] * np.sin(theta)
poly[3][1] -= R * r[3] * np.cos(theta)
## p1, p2
theta = np.arctan2((poly[2][0] - poly[1][0]),
(poly[2][1] - poly[1][1]))
poly[1][0] += R * r[1] * np.sin(theta)
poly[1][1] += R * r[1] * np.cos(theta)
poly[2][0] -= R * r[2] * np.sin(theta)
poly[2][1] -= R * r[2] * np.cos(theta)
else:
## p0, p3
# print poly
theta = np.arctan2((poly[3][0] - poly[0][0]),
(poly[3][1] - poly[0][1]))
poly[0][0] += R * r[0] * np.sin(theta)
poly[0][1] += R * r[0] * np.cos(theta)
poly[3][0] -= R * r[3] * np.sin(theta)
poly[3][1] -= R * r[3] * np.cos(theta)
## p1, p2
theta = np.arctan2((poly[2][0] - poly[1][0]),
(poly[2][1] - poly[1][1]))
poly[1][0] += R * r[1] * np.sin(theta)
poly[1][1] += R * r[1] * np.cos(theta)
poly[2][0] -= R * r[2] * np.sin(theta)
poly[2][1] -= R * r[2] * np.cos(theta)
## p0, p1
theta = np.arctan2((poly[1][1] - poly[0][1]),
(poly[1][0] - poly[0][0]))
poly[0][0] += R * r[0] * np.cos(theta)
poly[0][1] += R * r[0] * np.sin(theta)
poly[1][0] -= R * r[1] * np.cos(theta)
poly[1][1] -= R * r[1] * np.sin(theta)
## p2, p3
theta = np.arctan2((poly[2][1] - poly[3][1]),
(poly[2][0] - poly[3][0]))
poly[3][0] += R * r[3] * np.cos(theta)
poly[3][1] += R * r[3] * np.sin(theta)
poly[2][0] -= R * r[2] * np.cos(theta)
poly[2][1] -= R * r[2] * np.sin(theta)
return poly
def generate_quad(self, im_size, polys, tags):
"""
Generate quadrangle.
"""
h, w = im_size
poly_mask = np.zeros((h, w), dtype=np.uint8)
score_map = np.zeros((h, w), dtype=np.uint8)
# (x1, y1, ..., x4, y4, short_edge_norm)
geo_map = np.zeros((h, w, 9), dtype=np.float32)
# mask used during traning, to ignore some hard areas
training_mask = np.ones((h, w), dtype=np.uint8)
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
poly = poly_tag[0]
tag = poly_tag[1]
r = [None, None, None, None]
for i in range(4):
dist1 = np.linalg.norm(poly[i] - poly[(i + 1) % 4])
dist2 = np.linalg.norm(poly[i] - poly[(i - 1) % 4])
r[i] = min(dist1, dist2)
# score map
shrinked_poly = self.shrink_poly(
poly.copy(), r).astype(np.int32)[np.newaxis, :, :]
cv2.fillPoly(score_map, shrinked_poly, 1)
cv2.fillPoly(poly_mask, shrinked_poly, poly_idx + 1)
# if the poly is too small, then ignore it during training
poly_h = min(
np.linalg.norm(poly[0] - poly[3]),
np.linalg.norm(poly[1] - poly[2]))
poly_w = min(
np.linalg.norm(poly[0] - poly[1]),
np.linalg.norm(poly[2] - poly[3]))
if min(poly_h, poly_w) < self.min_text_size:
cv2.fillPoly(training_mask,
poly.astype(np.int32)[np.newaxis, :, :], 0)
if tag:
cv2.fillPoly(training_mask,
poly.astype(np.int32)[np.newaxis, :, :], 0)
xy_in_poly = np.argwhere(poly_mask == (poly_idx + 1))
# geo map.
y_in_poly = xy_in_poly[:, 0]
x_in_poly = xy_in_poly[:, 1]
poly[:, 0] = np.minimum(np.maximum(poly[:, 0], 0), w)
poly[:, 1] = np.minimum(np.maximum(poly[:, 1], 0), h)
for pno in range(4):
geo_channel_beg = pno * 2
geo_map[y_in_poly, x_in_poly, geo_channel_beg] =\
x_in_poly - poly[pno, 0]
geo_map[y_in_poly, x_in_poly, geo_channel_beg+1] =\
y_in_poly - poly[pno, 1]
geo_map[y_in_poly, x_in_poly, 8] = \
1.0 / max(min(poly_h, poly_w), 1.0)
return score_map, geo_map, training_mask
def crop_area(self,
im,
polys,
tags,
txts,
crop_background=False,
max_tries=50):
"""
make random crop from the input image
:param im:
:param polys:
:param tags:
:param crop_background:
:param max_tries:
:return:
"""
h, w, _ = im.shape
pad_h = h // 10
pad_w = w // 10
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w:maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h:maxy + pad_h] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return im, polys, tags, txts
for i in range(max_tries):
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
if xmax - xmin < self.min_crop_side_ratio * w or \
ymax - ymin < self.min_crop_side_ratio * h:
# area too small
continue
if polys.shape[0] != 0:
poly_axis_in_area = (polys[:, :, 0] >= xmin)\
& (polys[:, :, 0] <= xmax)\
& (polys[:, :, 1] >= ymin)\
& (polys[:, :, 1] <= ymax)
selected_polys = np.where(
np.sum(poly_axis_in_area, axis=1) == 4)[0]
else:
selected_polys = []
if len(selected_polys) == 0:
# no text in this area
if crop_background:
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
polys = []
tags = []
txts = []
return im, polys, tags, txts
else:
continue
im = im[ymin:ymax + 1, xmin:xmax + 1, :]
polys = polys[selected_polys]
tags = tags[selected_polys]
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
polys[:, :, 0] -= xmin
polys[:, :, 1] -= ymin
return im, polys, tags, txts
return im, polys, tags, txts
def crop_background_infor(self, im, text_polys, text_tags, text_strs):
im, text_polys, text_tags, text_strs = self.crop_area(
im, text_polys, text_tags, text_strs, crop_background=True)
if len(text_polys) > 0:
return None
# pad and resize image
input_size = self.input_size
im, ratio = self.preprocess(im)
score_map = np.zeros((input_size, input_size), dtype=np.float32)
geo_map = np.zeros((input_size, input_size, 9), dtype=np.float32)
training_mask = np.ones((input_size, input_size), dtype=np.float32)
return im, score_map, geo_map, training_mask
def crop_foreground_infor(self, im, text_polys, text_tags, text_strs):
im, text_polys, text_tags, text_strs = self.crop_area(
im, text_polys, text_tags, text_strs, crop_background=False)
if text_polys.shape[0] == 0:
return None
#continue for all ignore case
if np.sum((text_tags * 1.0)) >= text_tags.size:
return None
# pad and resize image
input_size = self.input_size
im, ratio = self.preprocess(im)
text_polys[:, :, 0] *= ratio
text_polys[:, :, 1] *= ratio
_, _, new_h, new_w = im.shape
# print(im.shape)
# self.draw_img_polys(im, text_polys)
score_map, geo_map, training_mask = self.generate_quad(
(new_h, new_w), text_polys, text_tags)
return im, score_map, geo_map, training_mask
def __call__(self, label_infor):
infor = self.convert_label_infor(label_infor)
im_path, text_polys, text_tags, text_strs = infor
im = cv2.imread(im_path)
if im is None:
return None
if text_polys.shape[0] == 0:
return None
#add rotate cases
if np.random.rand() < 0.5:
im, text_polys = self.rotate_im_poly(im, text_polys)
h, w, _ = im.shape
text_polys, text_tags = self.check_and_validate_polys(text_polys,
text_tags, h, w)
if text_polys.shape[0] == 0:
return None
# random scale this image
rd_scale = np.random.choice(self.random_scale)
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
text_polys *= rd_scale
if np.random.rand() < self.background_ratio:
outs = self.crop_background_infor(im, text_polys, text_tags,
text_strs)
else:
outs = self.crop_foreground_infor(im, text_polys, text_tags,
text_strs)
if outs is None:
return None
im, score_map, geo_map, training_mask = outs
score_map = score_map[np.newaxis, ::4, ::4].astype(np.float32)
geo_map = np.swapaxes(geo_map, 1, 2)
geo_map = np.swapaxes(geo_map, 1, 0)
geo_map = geo_map[:, ::4, ::4].astype(np.float32)
training_mask = training_mask[np.newaxis, ::4, ::4]
training_mask = training_mask.astype(np.float32)
return im, score_map, geo_map, training_mask
class EASTProcessTest(object):
def __init__(self, params):
super(EASTProcessTest, self).__init__()
self.resize_type = 0
if 'test_image_shape' in params:
self.image_shape = params['test_image_shape']
# print(self.image_shape)
self.resize_type = 1
if 'max_side_len' in params:
self.max_side_len = params['max_side_len']
else:
self.max_side_len = 2400
def resize_image_type0(self, im):
"""
resize image to a size multiple of 32 which is required by the network
args:
img(array): array with shape [h, w, c]
return(tuple):
img, (ratio_h, ratio_w)
"""
max_side_len = self.max_side_len
h, w, _ = im.shape
resize_w = w
resize_h = h
# limit the max side
if max(resize_h, resize_w) > max_side_len:
if resize_h > resize_w:
ratio = float(max_side_len) / resize_h
else:
ratio = float(max_side_len) / resize_w
else:
ratio = 1.
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
if resize_h % 32 == 0:
resize_h = resize_h
elif resize_h // 32 <= 1:
resize_h = 32
else:
resize_h = (resize_h // 32 - 1) * 32
if resize_w % 32 == 0:
resize_w = resize_w
elif resize_w // 32 <= 1:
resize_w = 32
else:
resize_w = (resize_w // 32 - 1) * 32
try:
if int(resize_w) <= 0 or int(resize_h) <= 0:
return None, (None, None)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
except:
print(im.shape, resize_w, resize_h)
sys.exit(0)
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def resize_image_type1(self, im):
resize_h, resize_w = self.image_shape
ori_h, ori_w = im.shape[:2] # (h, w, c)
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = float(resize_h) / ori_h
ratio_w = float(resize_w) / ori_w
return im, (ratio_h, ratio_w)
def __call__(self, im):
if self.resize_type == 0:
im, (ratio_h, ratio_w) = self.resize_image_type0(im)
else:
im, (ratio_h, ratio_w) = self.resize_image_type1(im)
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im[:, :, ::-1].astype(np.float32)
im = im / 255
im -= img_mean
im /= img_std
im = im.transpose((2, 0, 1))
im = im[np.newaxis, :]
return [im, (ratio_h, ratio_w)]

View File

@ -1,147 +0,0 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
np.seterr(divide='ignore', invalid='ignore')
import pyclipper
from shapely.geometry import Polygon
import sys
import warnings
warnings.simplefilter("ignore")
def draw_border_map(polygon, canvas, mask, shrink_ratio):
polygon = np.array(polygon)
assert polygon.ndim == 2
assert polygon.shape[1] == 2
polygon_shape = Polygon(polygon)
if polygon_shape.area <= 0:
return
distance = polygon_shape.area * (
1 - np.power(shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
padded_polygon = np.array(padding.Execute(distance)[0])
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
xmin = padded_polygon[:, 0].min()
xmax = padded_polygon[:, 0].max()
ymin = padded_polygon[:, 1].min()
ymax = padded_polygon[:, 1].max()
width = xmax - xmin + 1
height = ymax - ymin + 1
polygon[:, 0] = polygon[:, 0] - xmin
polygon[:, 1] = polygon[:, 1] - ymin
xs = np.broadcast_to(
np.linspace(
0, width - 1, num=width).reshape(1, width), (height, width))
ys = np.broadcast_to(
np.linspace(
0, height - 1, num=height).reshape(height, 1), (height, width))
distance_map = np.zeros((polygon.shape[0], height, width), dtype=np.float32)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
absolute_distance = _distance(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = distance_map.min(axis=0)
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
xmin_valid - xmin:xmax_valid - xmax + width],
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
def _distance(xs, ys, point_1, point_2):
'''
compute the distance from point to a line
ys: coordinates in the first axis
xs: coordinates in the second axis
point_1, point_2: (x, y), the end of the line
'''
height, width = xs.shape[:2]
square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - point_1[1])
square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - point_2[1])
square_distance = np.square(point_1[0] - point_2[0]) + np.square(point_1[
1] - point_2[1])
cosin = (square_distance - square_distance_1 - square_distance_2) / (
2 * np.sqrt(square_distance_1 * square_distance_2))
square_sin = 1 - np.square(cosin)
square_sin = np.nan_to_num(square_sin)
result = np.sqrt(square_distance_1 * square_distance_2 * square_sin /
square_distance)
result[cosin <
0] = np.sqrt(np.fmin(square_distance_1, square_distance_2))[cosin <
0]
# self.extend_line(point_1, point_2, result)
return result
def extend_line(point_1, point_2, result, shrink_ratio):
ex_point_1 = (
int(
round(point_1[0] + (point_1[0] - point_2[0]) * (1 + shrink_ratio))),
int(
round(point_1[1] + (point_1[1] - point_2[1]) * (1 + shrink_ratio))))
cv2.line(
result,
tuple(ex_point_1),
tuple(point_1),
4096.0,
1,
lineType=cv2.LINE_AA,
shift=0)
ex_point_2 = (
int(
round(point_2[0] + (point_2[0] - point_1[0]) * (1 + shrink_ratio))),
int(
round(point_2[1] + (point_2[1] - point_1[1]) * (1 + shrink_ratio))))
cv2.line(
result,
tuple(ex_point_2),
tuple(point_2),
4096.0,
1,
lineType=cv2.LINE_AA,
shift=0)
return ex_point_1, ex_point_2
def MakeBorderMap(data):
shrink_ratio = 0.4
thresh_min = 0.3
thresh_max = 0.7
im = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
canvas = np.zeros(im.shape[:2], dtype=np.float32)
mask = np.zeros(im.shape[:2], dtype=np.float32)
for i in range(len(text_polys)):
if ignore_tags[i]:
continue
draw_border_map(
text_polys[i], canvas, mask=mask, shrink_ratio=shrink_ratio)
canvas = canvas * (thresh_max - thresh_min) + thresh_min
data['threshold_map'] = canvas
data['threshold_mask'] = mask
return data

View File

@ -1,88 +0,0 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
def validate_polygons(polygons, ignore_tags, h, w):
'''
polygons (numpy.array, required): of shape (num_instances, num_points, 2)
'''
if len(polygons) == 0:
return polygons, ignore_tags
assert len(polygons) == len(ignore_tags)
for polygon in polygons:
polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)
for i in range(len(polygons)):
area = polygon_area(polygons[i])
if abs(area) < 1:
ignore_tags[i] = True
if area > 0:
polygons[i] = polygons[i][::-1, :]
return polygons, ignore_tags
def polygon_area(polygon):
edge = 0
for i in range(polygon.shape[0]):
next_index = (i + 1) % polygon.shape[0]
edge += (polygon[next_index, 0] - polygon[i, 0]) * (
polygon[next_index, 1] - polygon[i, 1])
return edge / 2.
def MakeShrinkMap(data):
min_text_size = 8
shrink_ratio = 0.4
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
h, w = image.shape[:2]
text_polys, ignore_tags = validate_polygons(text_polys, ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32)
# gt = np.zeros((1, h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32)
for i in range(len(text_polys)):
polygon = text_polys[i]
height = max(polygon[:, 1]) - min(polygon[:, 1])
width = max(polygon[:, 0]) - min(polygon[:, 0])
# height = min(np.linalg.norm(polygon[0] - polygon[3]),
# np.linalg.norm(polygon[1] - polygon[2]))
# width = min(np.linalg.norm(polygon[0] - polygon[1]),
# np.linalg.norm(polygon[2] - polygon[3]))
if ignore_tags[i] or min(height, width) < min_text_size:
cv2.fillPoly(mask, polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
else:
polygon_shape = Polygon(polygon)
distance = polygon_shape.area * (
1 - np.power(shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(l) for l in text_polys[i]]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = padding.Execute(-distance)
if shrinked == []:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
continue
shrinked = np.array(shrinked[0]).reshape(-1, 2)
cv2.fillPoly(gt, [shrinked.astype(np.int32)], 1)
# cv2.fillPoly(gt[0], [shrinked.astype(np.int32)], 1)
data['shrink_map'] = gt
data['shrink_mask'] = mask
return data

View File

@ -1,155 +0,0 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
import random
def is_poly_in_rect(poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
return False
if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
return False
return True
def is_poly_outside_rect(poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
return True
if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
return True
return False
def split_regions(axis):
regions = []
min_axis = 0
for i in range(1, axis.shape[0]):
if axis[i] != axis[i - 1] + 1:
region = axis[min_axis:i]
min_axis = i
regions.append(region)
return regions
def random_select(axis, max_size):
xx = np.random.choice(axis, size=2)
xmin = np.min(xx)
xmax = np.max(xx)
xmin = np.clip(xmin, 0, max_size - 1)
xmax = np.clip(xmax, 0, max_size - 1)
return xmin, xmax
def region_wise_random_select(regions, max_size):
selected_index = list(np.random.choice(len(regions), 2))
selected_values = []
for index in selected_index:
axis = regions[index]
xx = int(np.random.choice(axis, size=1))
selected_values.append(xx)
xmin = min(selected_values)
xmax = max(selected_values)
return xmin, xmax
def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
h, w, _ = im.shape
h_array = np.zeros(h, dtype=np.int32)
w_array = np.zeros(w, dtype=np.int32)
for points in text_polys:
points = np.round(points, decimals=0).astype(np.int32)
minx = np.min(points[:, 0])
maxx = np.max(points[:, 0])
w_array[minx:maxx] = 1
miny = np.min(points[:, 1])
maxy = np.max(points[:, 1])
h_array[miny:maxy] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return 0, 0, w, h
h_regions = split_regions(h_axis)
w_regions = split_regions(w_axis)
for i in range(max_tries):
if len(w_regions) > 1:
xmin, xmax = region_wise_random_select(w_regions, w)
else:
xmin, xmax = random_select(w_axis, w)
if len(h_regions) > 1:
ymin, ymax = region_wise_random_select(h_regions, h)
else:
ymin, ymax = random_select(h_axis, h)
if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
# area too small
continue
num_poly_in_rect = 0
for poly in text_polys:
if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
ymax - ymin):
num_poly_in_rect += 1
break
if num_poly_in_rect > 0:
return xmin, ymin, xmax - xmin, ymax - ymin
return 0, 0, w, h
def RandomCropData(data, size):
max_tries = 10
min_crop_side_ratio = 0.1
require_original_image = False
keep_ratio = True
im = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
texts = data['texts']
all_care_polys = [
text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
]
# 计算crop区域
crop_x, crop_y, crop_w, crop_h = crop_area(im, all_care_polys,
min_crop_side_ratio, max_tries)
# crop 图片 保持比例填充
scale_w = size[0] / crop_w
scale_h = size[1] / crop_h
scale = min(scale_w, scale_h)
h = int(crop_h * scale)
w = int(crop_w * scale)
if keep_ratio:
padimg = np.zeros((size[1], size[0], im.shape[2]), im.dtype)
padimg[:h, :w] = cv2.resize(
im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
img = padimg
else:
img = cv2.resize(im[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
tuple(size))
# crop 文本框
text_polys_crop = []
ignore_tags_crop = []
texts_crop = []
for poly, text, tag in zip(text_polys, texts, ignore_tags):
poly = ((poly - (crop_x, crop_y)) * scale).tolist()
if not is_poly_outside_rect(poly, 0, 0, w, h):
text_polys_crop.append(poly)
ignore_tags_crop.append(tag)
texts_crop.append(text)
data['image'] = img
data['polys'] = np.array(text_polys_crop)
data['ignore_tags'] = ignore_tags_crop
data['texts'] = texts_crop
return data

View File

@ -1,781 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import math
import cv2
import numpy as np
import json
class SASTProcessTrain(object):
"""
SAST process function for training
"""
def __init__(self, params):
self.img_set_dir = params['img_set_dir']
self.min_crop_side_ratio = params['min_crop_side_ratio']
self.min_crop_size = params['min_crop_size']
image_shape = params['image_shape']
self.input_size = image_shape[1]
self.min_text_size = params['min_text_size']
self.max_text_size = params['max_text_size']
def convert_label_infor(self, label_infor):
label_infor = label_infor.decode()
label_infor = label_infor.encode('utf-8').decode('utf-8-sig')
substr = label_infor.strip("\n").split("\t")
img_path = self.img_set_dir + substr[0]
label = json.loads(substr[1])
nBox = len(label)
wordBBs, txts, txt_tags = [], [], []
for bno in range(0, nBox):
wordBB = label[bno]['points']
txt = label[bno]['transcription']
wordBBs.append(wordBB)
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
wordBBs = np.array(wordBBs, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
return img_path, wordBBs, txt_tags, txts
def quad_area(self, poly):
"""
compute area of a polygon
:param poly:
:return:
"""
edge = [
(poly[1][0] - poly[0][0]) * (poly[1][1] + poly[0][1]),
(poly[2][0] - poly[1][0]) * (poly[2][1] + poly[1][1]),
(poly[3][0] - poly[2][0]) * (poly[3][1] + poly[2][1]),
(poly[0][0] - poly[3][0]) * (poly[0][1] + poly[3][1])
]
return np.sum(edge) / 2.
def gen_quad_from_poly(self, poly):
"""
Generate min area quad from poly.
"""
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
if True:
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
center_point = rect[0]
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
return min_area_quad
def check_and_validate_polys(self, polys, tags, xxx_todo_changeme):
"""
check so that the text poly is in the same direction,
and also filter some invalid polygons
:param polys:
:param tags:
:return:
"""
(h, w) = xxx_todo_changeme
if polys.shape[0] == 0:
return polys, np.array([]), np.array([])
polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1)
polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1)
validated_polys = []
validated_tags = []
hv_tags = []
for poly, tag in zip(polys, tags):
quad = self.gen_quad_from_poly(poly)
p_area = self.quad_area(quad)
if abs(p_area) < 1:
print('invalid poly')
continue
if p_area > 0:
if tag == False:
print('poly in wrong direction')
tag = True # reversed cases should be ignore
poly = poly[(0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1), :]
quad = quad[(0, 3, 2, 1), :]
len_w = np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[3] - quad[2])
len_h = np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])
hv_tag = 1
if len_w * 2.0 < len_h:
hv_tag = 0
validated_polys.append(poly)
validated_tags.append(tag)
hv_tags.append(hv_tag)
return np.array(validated_polys), np.array(validated_tags), np.array(hv_tags)
def crop_area(self, im, polys, tags, hv_tags, txts, crop_background=False, max_tries=25):
"""
make random crop from the input image
:param im:
:param polys:
:param tags:
:param crop_background:
:param max_tries: 50 -> 25
:return:
"""
h, w, _ = im.shape
pad_h = h // 10
pad_w = w // 10
h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
w_array = np.zeros((w + pad_w * 2), dtype=np.int32)
for poly in polys:
poly = np.round(poly, decimals=0).astype(np.int32)
minx = np.min(poly[:, 0])
maxx = np.max(poly[:, 0])
w_array[minx + pad_w: maxx + pad_w] = 1
miny = np.min(poly[:, 1])
maxy = np.max(poly[:, 1])
h_array[miny + pad_h: maxy + pad_h] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return im, polys, tags, hv_tags, txts
for i in range(max_tries):
xx = np.random.choice(w_axis, size=2)
xmin = np.min(xx) - pad_w
xmax = np.max(xx) - pad_w
xmin = np.clip(xmin, 0, w - 1)
xmax = np.clip(xmax, 0, w - 1)
yy = np.random.choice(h_axis, size=2)
ymin = np.min(yy) - pad_h
ymax = np.max(yy) - pad_h
ymin = np.clip(ymin, 0, h - 1)
ymax = np.clip(ymax, 0, h - 1)
# if xmax - xmin < ARGS.min_crop_side_ratio * w or \
# ymax - ymin < ARGS.min_crop_side_ratio * h:
if xmax - xmin < self.min_crop_size or \
ymax - ymin < self.min_crop_size:
# area too small
continue
if polys.shape[0] != 0:
poly_axis_in_area = (polys[:, :, 0] >= xmin) & (polys[:, :, 0] <= xmax) \
& (polys[:, :, 1] >= ymin) & (polys[:, :, 1] <= ymax)
selected_polys = np.where(np.sum(poly_axis_in_area, axis=1) == 4)[0]
else:
selected_polys = []
if len(selected_polys) == 0:
# no text in this area
if crop_background:
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
return im[ymin : ymax + 1, xmin : xmax + 1, :], \
polys[selected_polys], tags[selected_polys], hv_tags[selected_polys], txts
else:
continue
im = im[ymin: ymax + 1, xmin: xmax + 1, :]
polys = polys[selected_polys]
tags = tags[selected_polys]
hv_tags = hv_tags[selected_polys]
txts_tmp = []
for selected_poly in selected_polys:
txts_tmp.append(txts[selected_poly])
txts = txts_tmp
polys[:, :, 0] -= xmin
polys[:, :, 1] -= ymin
return im, polys, tags, hv_tags, txts
return im, polys, tags, hv_tags, txts
def generate_direction_map(self, poly_quads, direction_map):
"""
"""
width_list = []
height_list = []
for quad in poly_quads:
quad_w = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
width_list.append(quad_w)
height_list.append(quad_h)
norm_width = max(sum(width_list) / (len(width_list) + 1e-6), 1.0)
average_height = max(sum(height_list) / (len(height_list) + 1e-6), 1.0)
for quad in poly_quads:
direct_vector_full = ((quad[1] + quad[2]) - (quad[0] + quad[3])) / 2.0
direct_vector = direct_vector_full / (np.linalg.norm(direct_vector_full) + 1e-6) * norm_width
direction_label = tuple(map(float, [direct_vector[0], direct_vector[1], 1.0 / (average_height + 1e-6)]))
cv2.fillPoly(direction_map, quad.round().astype(np.int32)[np.newaxis, :, :], direction_label)
return direction_map
def calculate_average_height(self, poly_quads):
"""
"""
height_list = []
for quad in poly_quads:
quad_h = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[2] - quad[1])) / 2.0
height_list.append(quad_h)
average_height = max(sum(height_list) / len(height_list), 1.0)
return average_height
def generate_tcl_label(self, hw, polys, tags, ds_ratio,
tcl_ratio=0.3, shrink_ratio_of_width=0.15):
"""
Generate polygon.
"""
h, w = hw
h, w = int(h * ds_ratio), int(w * ds_ratio)
polys = polys * ds_ratio
score_map = np.zeros((h, w,), dtype=np.float32)
tbo_map = np.zeros((h, w, 5), dtype=np.float32)
training_mask = np.ones((h, w,), dtype=np.float32)
direction_map = np.ones((h, w, 3)) * np.array([0, 0, 1]).reshape([1, 1, 3]).astype(np.float32)
for poly_idx, poly_tag in enumerate(zip(polys, tags)):
poly = poly_tag[0]
tag = poly_tag[1]
# generate min_area_quad
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
if min(min_area_quad_h, min_area_quad_w) < self.min_text_size * ds_ratio \
or min(min_area_quad_h, min_area_quad_w) > self.max_text_size * ds_ratio:
continue
if tag:
# continue
cv2.fillPoly(training_mask, poly.astype(np.int32)[np.newaxis, :, :], 0.15)
else:
tcl_poly = self.poly2tcl(poly, tcl_ratio)
tcl_quads = self.poly2quads(tcl_poly)
poly_quads = self.poly2quads(poly)
# stcl map
stcl_quads, quad_index = self.shrink_poly_along_width(tcl_quads, shrink_ratio_of_width=shrink_ratio_of_width,
expand_height_ratio=1.0 / tcl_ratio)
# generate tcl map
cv2.fillPoly(score_map, np.round(stcl_quads).astype(np.int32), 1.0)
# generate tbo map
for idx, quad in enumerate(stcl_quads):
quad_mask = np.zeros((h, w), dtype=np.float32)
quad_mask = cv2.fillPoly(quad_mask, np.round(quad[np.newaxis, :, :]).astype(np.int32), 1.0)
tbo_map = self.gen_quad_tbo(poly_quads[quad_index[idx]], quad_mask, tbo_map)
return score_map, tbo_map, training_mask
def generate_tvo_and_tco(self, hw, polys, tags, tcl_ratio=0.3, ds_ratio=0.25):
"""
Generate tcl map, tvo map and tbo map.
"""
h, w = hw
h, w = int(h * ds_ratio), int(w * ds_ratio)
polys = polys * ds_ratio
poly_mask = np.zeros((h, w), dtype=np.float32)
tvo_map = np.ones((9, h, w), dtype=np.float32)
tvo_map[0:-1:2] = np.tile(np.arange(0, w), (h, 1))
tvo_map[1:-1:2] = np.tile(np.arange(0, w), (h, 1)).T
poly_tv_xy_map = np.zeros((8, h, w), dtype=np.float32)
# tco map
tco_map = np.ones((3, h, w), dtype=np.float32)
tco_map[0] = np.tile(np.arange(0, w), (h, 1))
tco_map[1] = np.tile(np.arange(0, w), (h, 1)).T
poly_tc_xy_map = np.zeros((2, h, w), dtype=np.float32)
poly_short_edge_map = np.ones((h, w), dtype=np.float32)
for poly, poly_tag in zip(polys, tags):
if poly_tag == True:
continue
# adjust point order for vertical poly
poly = self.adjust_point(poly)
# generate min_area_quad
min_area_quad, center_point = self.gen_min_area_quad_from_poly(poly)
min_area_quad_h = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[3]) +
np.linalg.norm(min_area_quad[1] - min_area_quad[2]))
min_area_quad_w = 0.5 * (np.linalg.norm(min_area_quad[0] - min_area_quad[1]) +
np.linalg.norm(min_area_quad[2] - min_area_quad[3]))
# generate tcl map and text, 128 * 128
tcl_poly = self.poly2tcl(poly, tcl_ratio)
# generate poly_tv_xy_map
for idx in range(4):
cv2.fillPoly(poly_tv_xy_map[2 * idx],
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
float(min(max(min_area_quad[idx, 0], 0), w)))
cv2.fillPoly(poly_tv_xy_map[2 * idx + 1],
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
float(min(max(min_area_quad[idx, 1], 0), h)))
# generate poly_tc_xy_map
for idx in range(2):
cv2.fillPoly(poly_tc_xy_map[idx],
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), float(center_point[idx]))
# generate poly_short_edge_map
cv2.fillPoly(poly_short_edge_map,
np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32),
float(max(min(min_area_quad_h, min_area_quad_w), 1.0)))
# generate poly_mask and training_mask
cv2.fillPoly(poly_mask, np.round(tcl_poly[np.newaxis, :, :]).astype(np.int32), 1)
tvo_map *= poly_mask
tvo_map[:8] -= poly_tv_xy_map
tvo_map[-1] /= poly_short_edge_map
tvo_map = tvo_map.transpose((1, 2, 0))
tco_map *= poly_mask
tco_map[:2] -= poly_tc_xy_map
tco_map[-1] /= poly_short_edge_map
tco_map = tco_map.transpose((1, 2, 0))
return tvo_map, tco_map
def adjust_point(self, poly):
"""
adjust point order.
"""
point_num = poly.shape[0]
if point_num == 4:
len_1 = np.linalg.norm(poly[0] - poly[1])
len_2 = np.linalg.norm(poly[1] - poly[2])
len_3 = np.linalg.norm(poly[2] - poly[3])
len_4 = np.linalg.norm(poly[3] - poly[0])
if (len_1 + len_3) * 1.5 < (len_2 + len_4):
poly = poly[[1, 2, 3, 0], :]
elif point_num > 4:
vector_1 = poly[0] - poly[1]
vector_2 = poly[1] - poly[2]
cos_theta = np.dot(vector_1, vector_2) / (np.linalg.norm(vector_1) * np.linalg.norm(vector_2) + 1e-6)
theta = np.arccos(np.round(cos_theta, decimals=4))
if abs(theta) > (70 / 180 * math.pi):
index = list(range(1, point_num)) + [0]
poly = poly[np.array(index), :]
return poly
def gen_min_area_quad_from_poly(self, poly):
"""
Generate min area quad from poly.
"""
point_num = poly.shape[0]
min_area_quad = np.zeros((4, 2), dtype=np.float32)
if point_num == 4:
min_area_quad = poly
center_point = np.sum(poly, axis=0) / 4
else:
rect = cv2.minAreaRect(poly.astype(np.int32)) # (center (x,y), (width, height), angle of rotation)
center_point = rect[0]
box = np.array(cv2.boxPoints(rect))
first_point_idx = 0
min_dist = 1e4
for i in range(4):
dist = np.linalg.norm(box[(i + 0) % 4] - poly[0]) + \
np.linalg.norm(box[(i + 1) % 4] - poly[point_num // 2 - 1]) + \
np.linalg.norm(box[(i + 2) % 4] - poly[point_num // 2]) + \
np.linalg.norm(box[(i + 3) % 4] - poly[-1])
if dist < min_dist:
min_dist = dist
first_point_idx = i
for i in range(4):
min_area_quad[i] = box[(first_point_idx + i) % 4]
return min_area_quad, center_point
def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
"""
Generate shrink_quad_along_width.
"""
ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
def shrink_poly_along_width(self, quads, shrink_ratio_of_width, expand_height_ratio=1.0):
"""
shrink poly with given length.
"""
upper_edge_list = []
def get_cut_info(edge_len_list, cut_len):
for idx, edge_len in enumerate(edge_len_list):
cut_len -= edge_len
if cut_len <= 0.000001:
ratio = (cut_len + edge_len_list[idx]) / edge_len_list[idx]
return idx, ratio
for quad in quads:
upper_edge_len = np.linalg.norm(quad[0] - quad[1])
upper_edge_list.append(upper_edge_len)
# length of left edge and right edge.
left_length = np.linalg.norm(quads[0][0] - quads[0][3]) * expand_height_ratio
right_length = np.linalg.norm(quads[-1][1] - quads[-1][2]) * expand_height_ratio
shrink_length = min(left_length, right_length, sum(upper_edge_list)) * shrink_ratio_of_width
# shrinking length
upper_len_left = shrink_length
upper_len_right = sum(upper_edge_list) - shrink_length
left_idx, left_ratio = get_cut_info(upper_edge_list, upper_len_left)
left_quad = self.shrink_quad_along_width(quads[left_idx], begin_width_ratio=left_ratio, end_width_ratio=1)
right_idx, right_ratio = get_cut_info(upper_edge_list, upper_len_right)
right_quad = self.shrink_quad_along_width(quads[right_idx], begin_width_ratio=0, end_width_ratio=right_ratio)
out_quad_list = []
if left_idx == right_idx:
out_quad_list.append([left_quad[0], right_quad[1], right_quad[2], left_quad[3]])
else:
out_quad_list.append(left_quad)
for idx in range(left_idx + 1, right_idx):
out_quad_list.append(quads[idx])
out_quad_list.append(right_quad)
return np.array(out_quad_list), list(range(left_idx, right_idx + 1))
def vector_angle(self, A, B):
"""
Calculate the angle between vector AB and x-axis positive direction.
"""
AB = np.array([B[1] - A[1], B[0] - A[0]])
return np.arctan2(*AB)
def theta_line_cross_point(self, theta, point):
"""
Calculate the line through given point and angle in ax + by + c =0 form.
"""
x, y = point
cos = np.cos(theta)
sin = np.sin(theta)
return [sin, -cos, cos * y - sin * x]
def line_cross_two_point(self, A, B):
"""
Calculate the line through given point A and B in ax + by + c =0 form.
"""
angle = self.vector_angle(A, B)
return self.theta_line_cross_point(angle, A)
def average_angle(self, poly):
"""
Calculate the average angle between left and right edge in given poly.
"""
p0, p1, p2, p3 = poly
angle30 = self.vector_angle(p3, p0)
angle21 = self.vector_angle(p2, p1)
return (angle30 + angle21) / 2
def line_cross_point(self, line1, line2):
"""
line1 and line2 in 0=ax+by+c form, compute the cross point of line1 and line2
"""
a1, b1, c1 = line1
a2, b2, c2 = line2
d = a1 * b2 - a2 * b1
if d == 0:
#print("line1", line1)
#print("line2", line2)
print('Cross point does not exist')
return np.array([0, 0], dtype=np.float32)
else:
x = (b1 * c2 - b2 * c1) / d
y = (a2 * c1 - a1 * c2) / d
return np.array([x, y], dtype=np.float32)
def quad2tcl(self, poly, ratio):
"""
Generate center line by poly clock-wise point. (4, 2)
"""
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
p0_3 = poly[0] + (poly[3] - poly[0]) * ratio_pair
p1_2 = poly[1] + (poly[2] - poly[1]) * ratio_pair
return np.array([p0_3[0], p1_2[0], p1_2[1], p0_3[1]])
def poly2tcl(self, poly, ratio):
"""
Generate center line by poly clock-wise point.
"""
ratio_pair = np.array([[0.5 - ratio / 2], [0.5 + ratio / 2]], dtype=np.float32)
tcl_poly = np.zeros_like(poly)
point_num = poly.shape[0]
for idx in range(point_num // 2):
point_pair = poly[idx] + (poly[point_num - 1 - idx] - poly[idx]) * ratio_pair
tcl_poly[idx] = point_pair[0]
tcl_poly[point_num - 1 - idx] = point_pair[1]
return tcl_poly
def gen_quad_tbo(self, quad, tcl_mask, tbo_map):
"""
Generate tbo_map for give quad.
"""
# upper and lower line function: ax + by + c = 0;
up_line = self.line_cross_two_point(quad[0], quad[1])
lower_line = self.line_cross_two_point(quad[3], quad[2])
quad_h = 0.5 * (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2]))
quad_w = 0.5 * (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3]))
# average angle of left and right line.
angle = self.average_angle(quad)
xy_in_poly = np.argwhere(tcl_mask == 1)
for y, x in xy_in_poly:
point = (x, y)
line = self.theta_line_cross_point(angle, point)
cross_point_upper = self.line_cross_point(up_line, line)
cross_point_lower = self.line_cross_point(lower_line, line)
##FIX, offset reverse
upper_offset_x, upper_offset_y = cross_point_upper - point
lower_offset_x, lower_offset_y = cross_point_lower - point
tbo_map[y, x, 0] = upper_offset_y
tbo_map[y, x, 1] = upper_offset_x
tbo_map[y, x, 2] = lower_offset_y
tbo_map[y, x, 3] = lower_offset_x
tbo_map[y, x, 4] = 1.0 / max(min(quad_h, quad_w), 1.0) * 2
return tbo_map
def poly2quads(self, poly):
"""
Split poly into quads.
"""
quad_list = []
point_num = poly.shape[0]
# point pair
point_pair_list = []
for idx in range(point_num // 2):
point_pair = [poly[idx], poly[point_num - 1 - idx]]
point_pair_list.append(point_pair)
quad_num = point_num // 2 - 1
for idx in range(quad_num):
# reshape and adjust to clock-wise
quad_list.append((np.array(point_pair_list)[[idx, idx + 1]]).reshape(4, 2)[[0, 2, 3, 1]])
return np.array(quad_list)
def extract_polys(self, poly_txt_path):
"""
Read text_polys, txt_tags, txts from give txt file.
"""
text_polys, txt_tags, txts = [], [], []
with open(poly_txt_path) as f:
for line in f.readlines():
poly_str, txt = line.strip().split('\t')
poly = map(float, poly_str.split(','))
text_polys.append(np.array(poly, dtype=np.float32).reshape(-1, 2))
txts.append(txt)
if txt == '###':
txt_tags.append(True)
else:
txt_tags.append(False)
return np.array(map(np.array, text_polys)), \
np.array(txt_tags, dtype=np.bool), txts
def __call__(self, label_infor):
infor = self.convert_label_infor(label_infor)
im_path, text_polys, text_tags, text_strs = infor
im = cv2.imread(im_path)
if im is None:
return None
if text_polys.shape[0] == 0:
return None
h, w, _ = im.shape
text_polys, text_tags, hv_tags = self.check_and_validate_polys(text_polys, text_tags, (h, w))
if text_polys.shape[0] == 0:
return None
#set aspect ratio and keep area fix
asp_scales = np.arange(1.0, 1.55, 0.1)
asp_scale = np.random.choice(asp_scales)
if np.random.rand() < 0.5:
asp_scale = 1.0 / asp_scale
asp_scale = math.sqrt(asp_scale)
asp_wx = asp_scale
asp_hy = 1.0 / asp_scale
im = cv2.resize(im, dsize=None, fx=asp_wx, fy=asp_hy)
text_polys[:, :, 0] *= asp_wx
text_polys[:, :, 1] *= asp_hy
h, w, _ = im.shape
if max(h, w) > 2048:
rd_scale = 2048.0 / max(h, w)
im = cv2.resize(im, dsize=None, fx=rd_scale, fy=rd_scale)
text_polys *= rd_scale
h, w, _ = im.shape
if min(h, w) < 16:
return None
#no background
im, text_polys, text_tags, hv_tags, text_strs = self.crop_area(im, \
text_polys, text_tags, hv_tags, text_strs, crop_background=False)
if text_polys.shape[0] == 0:
return None
#continue for all ignore case
if np.sum((text_tags * 1.0)) >= text_tags.size:
return None
new_h, new_w, _ = im.shape
if (new_h is None) or (new_w is None):
return None
#resize image
std_ratio = float(self.input_size) / max(new_w, new_h)
rand_scales = np.array([0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.0, 1.0, 1.0, 1.0])
rz_scale = std_ratio * np.random.choice(rand_scales)
im = cv2.resize(im, dsize=None, fx=rz_scale, fy=rz_scale)
text_polys[:, :, 0] *= rz_scale
text_polys[:, :, 1] *= rz_scale
#add gaussian blur
if np.random.rand() < 0.1 * 0.5:
ks = np.random.permutation(5)[0] + 1
ks = int(ks/2)*2 + 1
im = cv2.GaussianBlur(im, ksize=(ks, ks), sigmaX=0, sigmaY=0)
#add brighter
if np.random.rand() < 0.1 * 0.5:
im = im * (1.0 + np.random.rand() * 0.5)
im = np.clip(im, 0.0, 255.0)
#add darker
if np.random.rand() < 0.1 * 0.5:
im = im * (1.0 - np.random.rand() * 0.5)
im = np.clip(im, 0.0, 255.0)
# Padding the im to [input_size, input_size]
new_h, new_w, _ = im.shape
if min(new_w, new_h) < self.input_size * 0.5:
return None
im_padded = np.ones((self.input_size, self.input_size, 3), dtype=np.float32)
im_padded[:, :, 2] = 0.485 * 255
im_padded[:, :, 1] = 0.456 * 255
im_padded[:, :, 0] = 0.406 * 255
# Random the start position
del_h = self.input_size - new_h
del_w = self.input_size - new_w
sh, sw = 0, 0
if del_h > 1:
sh = int(np.random.rand() * del_h)
if del_w > 1:
sw = int(np.random.rand() * del_w)
# Padding
im_padded[sh: sh + new_h, sw: sw + new_w, :] = im.copy()
text_polys[:, :, 0] += sw
text_polys[:, :, 1] += sh
score_map, border_map, training_mask = self.generate_tcl_label((self.input_size, self.input_size),
text_polys, text_tags, 0.25)
# SAST head
tvo_map, tco_map = self.generate_tvo_and_tco((self.input_size, self.input_size), text_polys, text_tags, tcl_ratio=0.3, ds_ratio=0.25)
# print("test--------tvo_map shape:", tvo_map.shape)
im_padded[:, :, 2] -= 0.485 * 255
im_padded[:, :, 1] -= 0.456 * 255
im_padded[:, :, 0] -= 0.406 * 255
im_padded[:, :, 2] /= (255.0 * 0.229)
im_padded[:, :, 1] /= (255.0 * 0.224)
im_padded[:, :, 0] /= (255.0 * 0.225)
im_padded = im_padded.transpose((2, 0, 1))
return im_padded[::-1, :, :], score_map[np.newaxis, :, :], border_map.transpose((2, 0, 1)), training_mask[np.newaxis, :, :], tvo_map.transpose((2, 0, 1)), tco_map.transpose((2, 0, 1))
class SASTProcessTest(object):
"""
SAST process function for test
"""
def __init__(self, params):
super(SASTProcessTest, self).__init__()
if 'max_side_len' in params:
self.max_side_len = params['max_side_len']
else:
self.max_side_len = 2400
def resize_image(self, im):
"""
resize image to a size multiple of max_stride which is required by the network
:param im: the resized image
:param max_side_len: limit of max image size to avoid out of memory in gpu
:return: the resized image and the resize ratio
"""
h, w, _ = im.shape
resize_w = w
resize_h = h
# Fix the longer side
if resize_h > resize_w:
ratio = float(self.max_side_len) / resize_h
else:
ratio = float(self.max_side_len) / resize_w
resize_h = int(resize_h * ratio)
resize_w = int(resize_w * ratio)
max_stride = 128
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
im = cv2.resize(im, (int(resize_w), int(resize_h)))
ratio_h = resize_h / float(h)
ratio_w = resize_w / float(w)
return im, (ratio_h, ratio_w)
def __call__(self, im):
src_h, src_w, _ = im.shape
im, (ratio_h, ratio_w) = self.resize_image(im)
img_mean = [0.485, 0.456, 0.406]
img_std = [0.229, 0.224, 0.225]
im = im[:, :, ::-1].astype(np.float32)
im = im / 255
im -= img_mean
im /= img_std
im = im.transpose((2, 0, 1))
im = im[np.newaxis, :]
return [im, (ratio_h, ratio_w, src_h, src_w)]

View File

@ -0,0 +1,59 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from .iaa_augment import IaaAugment
from .make_border_map import MakeBorderMap
from .make_shrink_map import MakeShrinkMap
from .random_crop_data import EastRandomCropData, PSERandomCrop
from .rec_img_aug import RecAug, RecResizeImg
from .operators import *
from .label_ops import *
def transform(data, ops=None):
""" transform """
if ops is None:
ops = []
for op in ops:
data = op(data)
if data is None:
return None
return data
def create_operators(op_param_list, global_config=None):
"""
create operators based on the config
Args:
params(list): a dict list, used to create some operators
"""
assert isinstance(op_param_list, list), ('operator config should be a list')
ops = []
for operator in op_param_list:
assert isinstance(operator,
dict) and len(operator) == 1, "yaml format error"
op_name = list(operator)[0]
param = {} if operator[op_name] is None else operator[op_name]
if global_config is not None:
param.update(global_config)
op = eval(op_name)(**param)
ops.append(op)
return ops

View File

@ -0,0 +1,101 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import imgaug
import imgaug.augmenters as iaa
class AugmenterBuilder(object):
def __init__(self):
pass
def build(self, args, root=True):
if args is None or len(args) == 0:
return None
elif isinstance(args, list):
if root:
sequence = [self.build(value, root=False) for value in args]
return iaa.Sequential(sequence)
else:
return getattr(iaa, args[0])(
*[self.to_tuple_if_list(a) for a in args[1:]])
elif isinstance(args, dict):
cls = getattr(iaa, args['type'])
return cls(**{
k: self.to_tuple_if_list(v)
for k, v in args['args'].items()
})
else:
raise RuntimeError('unknown augmenter arg: ' + str(args))
def to_tuple_if_list(self, obj):
if isinstance(obj, list):
return tuple(obj)
return obj
class IaaAugment():
def __init__(self, augmenter_args=None, **kwargs):
if augmenter_args is None:
augmenter_args = [{
'type': 'Fliplr',
'args': {
'p': 0.5
}
}, {
'type': 'Affine',
'args': {
'rotate': [-10, 10]
}
}, {
'type': 'Resize',
'args': {
'size': [0.5, 3]
}
}]
self.augmenter = AugmenterBuilder().build(augmenter_args)
def __call__(self, data):
image = data['image']
shape = image.shape
if self.augmenter:
aug = self.augmenter.to_deterministic()
data['image'] = aug.augment_image(image)
data = self.may_augment_annotation(aug, data, shape)
return data
def may_augment_annotation(self, aug, data, shape):
if aug is None:
return data
line_polys = []
for poly in data['polys']:
new_poly = self.may_augment_poly(aug, shape, poly)
line_polys.append(new_poly)
data['polys'] = np.array(line_polys)
return data
def may_augment_poly(self, aug, img_shape, poly):
keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly]
keypoints = aug.augment_keypoints(
[imgaug.KeypointsOnImage(
keypoints, shape=img_shape)])[0].keypoints
poly = [(p.x, p.y) for p in keypoints]
return poly

View File

@ -0,0 +1,197 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
from ppocr.utils.logging import get_logger
class DetLabelEncode(object):
def __init__(self, **kwargs):
pass
def __call__(self, data):
import json
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['texts'] = txts
data['ignore_tags'] = txt_tags
return data
def order_points_clockwise(self, pts):
rect = np.zeros((4, 2), dtype="float32")
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
class BaseRecLabelEncode(object):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False):
support_character_type = ['ch', 'en', 'en_sensitive']
assert character_type in support_character_type, "Only {} are supported now but get {}".format(
support_character_type, self.character_str)
self.max_text_len = max_text_length
if character_type == "en":
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
elif character_type == "ch":
self.character_str = ""
assert character_dict_path is not None, "character_dict_path should not be None when character_type is ch"
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str += line
if use_space_char:
self.character_str += " "
dict_character = list(self.character_str)
elif character_type == "en_sensitive":
# same with ASTER setting (use 94 char).
import string
self.character_str = string.printable[:-6]
dict_character = list(self.character_str)
self.character_type = character_type
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def add_special_char(self, dict_character):
return dict_character
def encode(self, text):
"""convert text-label into text-index.
input:
text: text labels of each image. [batch_size]
output:
text: concatenated text index for CTCLoss.
[sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
length: length of each text. [batch_size]
"""
if len(text) > self.max_text_len:
return None
if self.character_type == "en":
text = text.lower()
text_list = []
for char in text:
if char not in self.dict:
# logger = get_logger()
# logger.warning('{} is not in dict'.format(char))
continue
text_list.append(self.dict[char])
if len(text_list) == 0:
return None
return text_list
def get_ignored_tokens(self):
return [0] # for ctc blank
class CTCLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(CTCLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
text = data['label']
text = self.encode(text)
if text is None:
return None
data['length'] = np.array(len(text))
text = text + [0] * (self.max_text_len - len(text))
data['label'] = np.array(text)
return data
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character
class AttnLabelEncode(BaseRecLabelEncode):
""" Convert between text-label and text-index """
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='ch',
use_space_char=False,
**kwargs):
super(AttnLabelEncode,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
self.beg_str = "sos"
self.end_str = "eos"
def add_special_char(self, dict_character):
dict_character = [self.beg_str, self.end_str] + dict_character
return dict_character
def __call__(self, text):
text = self.encode(text)
return text
def get_ignored_tokens(self):
beg_idx = self.get_beg_end_flag_idx("beg")
end_idx = self.get_beg_end_flag_idx("end")
return [beg_idx, end_idx]
def get_beg_end_flag_idx(self, beg_or_end):
if beg_or_end == "beg":
idx = np.array(self.dict[self.beg_str])
elif beg_or_end == "end":
idx = np.array(self.dict[self.end_str])
else:
assert False, "Unsupport type %s in get_beg_end_flag_idx" \
% beg_or_end
return idx

View File

@ -0,0 +1,157 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
np.seterr(divide='ignore', invalid='ignore')
import pyclipper
from shapely.geometry import Polygon
import sys
import warnings
warnings.simplefilter("ignore")
__all__ = ['MakeBorderMap']
class MakeBorderMap(object):
def __init__(self,
shrink_ratio=0.4,
thresh_min=0.3,
thresh_max=0.7,
**kwargs):
self.shrink_ratio = shrink_ratio
self.thresh_min = thresh_min
self.thresh_max = thresh_max
def __call__(self, data: dict) -> dict:
img = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
canvas = np.zeros(img.shape[:2], dtype=np.float32)
mask = np.zeros(img.shape[:2], dtype=np.float32)
for i in range(len(text_polys)):
if ignore_tags[i]:
continue
self.draw_border_map(text_polys[i], canvas, mask=mask)
canvas = canvas * (self.thresh_max - self.thresh_min) + self.thresh_min
data['threshold_map'] = canvas
data['threshold_mask'] = mask
return data
def draw_border_map(self, polygon, canvas, mask):
polygon = np.array(polygon)
assert polygon.ndim == 2
assert polygon.shape[1] == 2
polygon_shape = Polygon(polygon)
if polygon_shape.area <= 0:
return
distance = polygon_shape.area * (
1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(l) for l in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
padded_polygon = np.array(padding.Execute(distance)[0])
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
xmin = padded_polygon[:, 0].min()
xmax = padded_polygon[:, 0].max()
ymin = padded_polygon[:, 1].min()
ymax = padded_polygon[:, 1].max()
width = xmax - xmin + 1
height = ymax - ymin + 1
polygon[:, 0] = polygon[:, 0] - xmin
polygon[:, 1] = polygon[:, 1] - ymin
xs = np.broadcast_to(
np.linspace(
0, width - 1, num=width).reshape(1, width), (height, width))
ys = np.broadcast_to(
np.linspace(
0, height - 1, num=height).reshape(height, 1), (height, width))
distance_map = np.zeros(
(polygon.shape[0], height, width), dtype=np.float32)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
absolute_distance = self._distance(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = distance_map.min(axis=0)
xmin_valid = min(max(0, xmin), canvas.shape[1] - 1)
xmax_valid = min(max(0, xmax), canvas.shape[1] - 1)
ymin_valid = min(max(0, ymin), canvas.shape[0] - 1)
ymax_valid = min(max(0, ymax), canvas.shape[0] - 1)
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1] = np.fmax(
1 - distance_map[ymin_valid - ymin:ymax_valid - ymax + height,
xmin_valid - xmin:xmax_valid - xmax + width],
canvas[ymin_valid:ymax_valid + 1, xmin_valid:xmax_valid + 1])
def _distance(self, xs, ys, point_1, point_2):
'''
compute the distance from point to a line
ys: coordinates in the first axis
xs: coordinates in the second axis
point_1, point_2: (x, y), the end of the line
'''
height, width = xs.shape[:2]
square_distance_1 = np.square(xs - point_1[0]) + np.square(ys - point_1[
1])
square_distance_2 = np.square(xs - point_2[0]) + np.square(ys - point_2[
1])
square_distance = np.square(point_1[0] - point_2[0]) + np.square(
point_1[1] - point_2[1])
cosin = (square_distance - square_distance_1 - square_distance_2) / (
2 * np.sqrt(square_distance_1 * square_distance_2))
square_sin = 1 - np.square(cosin)
square_sin = np.nan_to_num(square_sin)
result = np.sqrt(square_distance_1 * square_distance_2 * square_sin /
square_distance)
result[cosin <
0] = np.sqrt(np.fmin(square_distance_1, square_distance_2))[cosin
< 0]
# self.extend_line(point_1, point_2, result)
return result
def extend_line(self, point_1, point_2, result, shrink_ratio):
ex_point_1 = (int(
round(point_1[0] + (point_1[0] - point_2[0]) * (1 + shrink_ratio))),
int(
round(point_1[1] + (point_1[1] - point_2[1]) * (
1 + shrink_ratio))))
cv2.line(
result,
tuple(ex_point_1),
tuple(point_1),
4096.0,
1,
lineType=cv2.LINE_AA,
shift=0)
ex_point_2 = (int(
round(point_2[0] + (point_2[0] - point_1[0]) * (1 + shrink_ratio))),
int(
round(point_2[1] + (point_2[1] - point_1[1]) * (
1 + shrink_ratio))))
cv2.line(
result,
tuple(ex_point_2),
tuple(point_2),
4096.0,
1,
lineType=cv2.LINE_AA,
shift=0)
return ex_point_1, ex_point_2

View File

@ -0,0 +1,94 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
__all__ = ['MakeShrinkMap']
class MakeShrinkMap(object):
r'''
Making binary mask from detection data with ICDAR format.
Typically following the process of class `MakeICDARData`.
'''
def __init__(self, min_text_size=8, shrink_ratio=0.4, **kwargs):
self.min_text_size = min_text_size
self.shrink_ratio = shrink_ratio
def __call__(self, data):
image = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
h, w = image.shape[:2]
text_polys, ignore_tags = self.validate_polygons(text_polys,
ignore_tags, h, w)
gt = np.zeros((h, w), dtype=np.float32)
# gt = np.zeros((1, h, w), dtype=np.float32)
mask = np.ones((h, w), dtype=np.float32)
for i in range(len(text_polys)):
polygon = text_polys[i]
height = max(polygon[:, 1]) - min(polygon[:, 1])
width = max(polygon[:, 0]) - min(polygon[:, 0])
if ignore_tags[i] or min(height, width) < self.min_text_size:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
else:
polygon_shape = Polygon(polygon)
distance = polygon_shape.area * (
1 - np.power(self.shrink_ratio, 2)) / polygon_shape.length
subject = [tuple(l) for l in text_polys[i]]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
shrinked = padding.Execute(-distance)
if shrinked == []:
cv2.fillPoly(mask,
polygon.astype(np.int32)[np.newaxis, :, :], 0)
ignore_tags[i] = True
continue
shrinked = np.array(shrinked[0]).reshape(-1, 2)
cv2.fillPoly(gt, [shrinked.astype(np.int32)], 1)
# cv2.fillPoly(gt[0], [shrinked.astype(np.int32)], 1)
data['shrink_map'] = gt
data['shrink_mask'] = mask
return data
def validate_polygons(self, polygons, ignore_tags, h, w):
'''
polygons (numpy.array, required): of shape (num_instances, num_points, 2)
'''
if len(polygons) == 0:
return polygons, ignore_tags
assert len(polygons) == len(ignore_tags)
for polygon in polygons:
polygon[:, 0] = np.clip(polygon[:, 0], 0, w - 1)
polygon[:, 1] = np.clip(polygon[:, 1], 0, h - 1)
for i in range(len(polygons)):
area = self.polygon_area(polygons[i])
if abs(area) < 1:
ignore_tags[i] = True
if area > 0:
polygons[i] = polygons[i][::-1, :]
return polygons, ignore_tags
def polygon_area(self, polygon):
# return cv2.contourArea(polygon.astype(np.float32))
edge = 0
for i in range(polygon.shape[0]):
next_index = (i + 1) % polygon.shape[0]
edge += (polygon[next_index, 0] - polygon[i, 0]) * (
polygon[next_index, 1] - polygon[i, 1])
return edge / 2.

View File

@ -0,0 +1,185 @@
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import sys
import six
import cv2
import numpy as np
class DecodeImage(object):
""" decode image """
def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
self.img_mode = img_mode
self.channel_first = channel_first
def __call__(self, data):
img = data['image']
if six.PY2:
assert type(img) is str and len(
img) > 0, "invalid input 'img' in DecodeImage"
else:
assert type(img) is bytes and len(
img) > 0, "invalid input 'img' in DecodeImage"
img = np.frombuffer(img, dtype='uint8')
img = cv2.imdecode(img, 1)
if self.img_mode == 'GRAY':
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
elif self.img_mode == 'RGB':
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
img = img[:, :, ::-1]
if self.channel_first:
img = img.transpose((2, 0, 1))
data['image'] = img
return data
class NormalizeImage(object):
""" normalize image such as substract mean, divide std
"""
def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
if isinstance(scale, str):
scale = eval(scale)
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
mean = mean if mean is not None else [0.485, 0.456, 0.406]
std = std if std is not None else [0.229, 0.224, 0.225]
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
self.mean = np.array(mean).reshape(shape).astype('float32')
self.std = np.array(std).reshape(shape).astype('float32')
def __call__(self, data):
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
assert isinstance(img,
np.ndarray), "invalid input 'img' in NormalizeImage"
data['image'] = (
img.astype('float32') * self.scale - self.mean) / self.std
return data
class ToCHWImage(object):
""" convert hwc image to chw image
"""
def __init__(self, **kwargs):
pass
def __call__(self, data):
img = data['image']
from PIL import Image
if isinstance(img, Image.Image):
img = np.array(img)
data['image'] = img.transpose((2, 0, 1))
return data
class keepKeys(object):
def __init__(self, keep_keys, **kwargs):
self.keep_keys = keep_keys
def __call__(self, data):
data_list = []
for key in self.keep_keys:
data_list.append(data[key])
return data_list
class DetResizeForTest(object):
def __init__(self, **kwargs):
super(DetResizeForTest, self).__init__()
self.resize_type = 0
if 'image_shape' in kwargs:
self.image_shape = kwargs['image_shape']
self.resize_type = 1
if 'limit_side_len' in kwargs:
self.limit_side_len = kwargs['limit_side_len']
self.limit_type = kwargs.get('limit_type', 'min')
else:
self.limit_side_len = 736
self.limit_type = 'min'
def __call__(self, data):
img = data['image']
if self.resize_type == 0:
img, shape = self.resize_image_type0(img)
else:
img, shape = self.resize_image_type1(img)
data['image'] = img
data['shape'] = shape
return data
def resize_image_type1(self, img):
resize_h, resize_w = self.image_shape
ori_h, ori_w = img.shape[:2] # (h, w, c)
img = cv2.resize(img, (int(resize_w), int(resize_h)))
return img, np.array([ori_h, ori_w])
def resize_image_type0(self, img):
"""
resize image to a size multiple of 32 which is required by the network
args:
img(array): array with shape [h, w, c]
return(tuple):
img, (ratio_h, ratio_w)
"""
limit_side_len = self.limit_side_len
h, w, _ = img.shape
# limit the max side
if self.limit_type == 'max':
if max(h, w) > limit_side_len:
if h > w:
ratio = float(limit_side_len) / h
else:
ratio = float(limit_side_len) / w
else:
ratio = 1.
else:
if min(h, w) < limit_side_len:
if h < w:
ratio = float(limit_side_len) / h
else:
ratio = float(limit_side_len) / w
else:
ratio = 1.
resize_h = int(h * ratio)
resize_w = int(w * ratio)
resize_h = int(round(resize_h / 32) * 32)
resize_w = int(round(resize_w / 32) * 32)
try:
if int(resize_w) <= 0 or int(resize_h) <= 0:
return None, (None, None)
img = cv2.resize(img, (int(resize_w), int(resize_h)))
except:
print(img.shape, resize_w, resize_h)
sys.exit(0)
return img, np.array([h, w])

View File

@ -0,0 +1,210 @@
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import cv2
import random
def is_poly_in_rect(poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].min() < x or poly[:, 0].max() > x + w:
return False
if poly[:, 1].min() < y or poly[:, 1].max() > y + h:
return False
return True
def is_poly_outside_rect(poly, x, y, w, h):
poly = np.array(poly)
if poly[:, 0].max() < x or poly[:, 0].min() > x + w:
return True
if poly[:, 1].max() < y or poly[:, 1].min() > y + h:
return True
return False
def split_regions(axis):
regions = []
min_axis = 0
for i in range(1, axis.shape[0]):
if axis[i] != axis[i - 1] + 1:
region = axis[min_axis:i]
min_axis = i
regions.append(region)
return regions
def random_select(axis, max_size):
xx = np.random.choice(axis, size=2)
xmin = np.min(xx)
xmax = np.max(xx)
xmin = np.clip(xmin, 0, max_size - 1)
xmax = np.clip(xmax, 0, max_size - 1)
return xmin, xmax
def region_wise_random_select(regions, max_size):
selected_index = list(np.random.choice(len(regions), 2))
selected_values = []
for index in selected_index:
axis = regions[index]
xx = int(np.random.choice(axis, size=1))
selected_values.append(xx)
xmin = min(selected_values)
xmax = max(selected_values)
return xmin, xmax
def crop_area(im, text_polys, min_crop_side_ratio, max_tries):
h, w, _ = im.shape
h_array = np.zeros(h, dtype=np.int32)
w_array = np.zeros(w, dtype=np.int32)
for points in text_polys:
points = np.round(points, decimals=0).astype(np.int32)
minx = np.min(points[:, 0])
maxx = np.max(points[:, 0])
w_array[minx:maxx] = 1
miny = np.min(points[:, 1])
maxy = np.max(points[:, 1])
h_array[miny:maxy] = 1
# ensure the cropped area not across a text
h_axis = np.where(h_array == 0)[0]
w_axis = np.where(w_array == 0)[0]
if len(h_axis) == 0 or len(w_axis) == 0:
return 0, 0, w, h
h_regions = split_regions(h_axis)
w_regions = split_regions(w_axis)
for i in range(max_tries):
if len(w_regions) > 1:
xmin, xmax = region_wise_random_select(w_regions, w)
else:
xmin, xmax = random_select(w_axis, w)
if len(h_regions) > 1:
ymin, ymax = region_wise_random_select(h_regions, h)
else:
ymin, ymax = random_select(h_axis, h)
if xmax - xmin < min_crop_side_ratio * w or ymax - ymin < min_crop_side_ratio * h:
# area too small
continue
num_poly_in_rect = 0
for poly in text_polys:
if not is_poly_outside_rect(poly, xmin, ymin, xmax - xmin,
ymax - ymin):
num_poly_in_rect += 1
break
if num_poly_in_rect > 0:
return xmin, ymin, xmax - xmin, ymax - ymin
return 0, 0, w, h
class EastRandomCropData(object):
def __init__(self,
size=(640, 640),
max_tries=10,
min_crop_side_ratio=0.1,
keep_ratio=True,
**kwargs):
self.size = size
self.max_tries = max_tries
self.min_crop_side_ratio = min_crop_side_ratio
self.keep_ratio = keep_ratio
def __call__(self, data):
img = data['image']
text_polys = data['polys']
ignore_tags = data['ignore_tags']
texts = data['texts']
all_care_polys = [
text_polys[i] for i, tag in enumerate(ignore_tags) if not tag
]
# 计算crop区域
crop_x, crop_y, crop_w, crop_h = crop_area(
img, all_care_polys, self.min_crop_side_ratio, self.max_tries)
# crop 图片 保持比例填充
scale_w = self.size[0] / crop_w
scale_h = self.size[1] / crop_h
scale = min(scale_w, scale_h)
h = int(crop_h * scale)
w = int(crop_w * scale)
if self.keep_ratio:
padimg = np.zeros((self.size[1], self.size[0], img.shape[2]),
img.dtype)
padimg[:h, :w] = cv2.resize(
img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w], (w, h))
img = padimg
else:
img = cv2.resize(
img[crop_y:crop_y + crop_h, crop_x:crop_x + crop_w],
tuple(self.size))
# crop 文本框
text_polys_crop = []
ignore_tags_crop = []
texts_crop = []
for poly, text, tag in zip(text_polys, texts, ignore_tags):
poly = ((poly - (crop_x, crop_y)) * scale).tolist()
if not is_poly_outside_rect(poly, 0, 0, w, h):
text_polys_crop.append(poly)
ignore_tags_crop.append(tag)
texts_crop.append(text)
data['image'] = img
data['polys'] = np.array(text_polys_crop)
data['ignore_tags'] = ignore_tags_crop
data['texts'] = texts_crop
return data
class PSERandomCrop(object):
def __init__(self, size, **kwargs):
self.size = size
def __call__(self, data):
imgs = data['imgs']
h, w = imgs[0].shape[0:2]
th, tw = self.size
if w == tw and h == th:
return imgs
# label中存在文本实例并且按照概率进行裁剪使用threshold_label_map控制
if np.max(imgs[2]) > 0 and random.random() > 3 / 8:
# 文本实例的左上角点
tl = np.min(np.where(imgs[2] > 0), axis=1) - self.size
tl[tl < 0] = 0
# 文本实例的右下角点
br = np.max(np.where(imgs[2] > 0), axis=1) - self.size
br[br < 0] = 0
# 保证选到右下角点时有足够的距离进行crop
br[0] = min(br[0], h - th)
br[1] = min(br[1], w - tw)
for _ in range(50000):
i = random.randint(tl[0], br[0])
j = random.randint(tl[1], br[1])
# 保证shrink_label_map有文本
if imgs[1][i:i + th, j:j + tw].sum() <= 0:
continue
else:
break
else:
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
# return i, j, th, tw
for idx in range(len(imgs)):
if len(imgs[idx].shape) == 3:
imgs[idx] = imgs[idx][i:i + th, j:j + tw, :]
else:
imgs[idx] = imgs[idx][i:i + th, j:j + tw]
data['imgs'] = imgs
return data

View File

@ -1,31 +1,70 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import cv2
import numpy as np
import random
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from .text_image_aug import tia_perspective, tia_stretch, tia_distort
def get_bounding_box_rect(pos):
left = min(pos[0])
right = max(pos[0])
top = min(pos[1])
bottom = max(pos[1])
return [left, top, right, bottom]
class RecAug(object):
def __init__(self, **kwargsz):
pass
def __call__(self, data):
img = data['image']
img = warp(img, 10)
data['image'] = img
return data
class RecResizeImg(object):
def __init__(self,
image_shape,
infer_mode=False,
character_type='ch',
use_tps=False,
**kwargs):
self.image_shape = image_shape
self.infer_mode = infer_mode
self.character_type = character_type
self.use_tps = use_tps
def __call__(self, data):
img = data['image']
if self.infer_mode and self.character_type == "ch" and not self.use_tps:
norm_img = resize_norm_img_chinese(img, self.image_shape)
else:
norm_img = resize_norm_img(img, self.image_shape)
data['image'] = norm_img
return data
def resize_norm_img(img, image_shape):
@ -77,19 +116,6 @@ def resize_norm_img_chinese(img, image_shape):
return padding_im
def get_img_data(value):
"""get_img_data"""
if not value:
return None
imgdata = np.frombuffer(value, dtype='uint8')
if imgdata is None:
return None
imgori = cv2.imdecode(imgdata, 1)
if imgori is None:
return None
return imgori
def flag():
"""
flag
@ -196,6 +222,9 @@ class Config:
self.h = h
self.perspective = True
self.stretch = True
self.distort = True
self.crop = True
self.affine = False
self.reverse = True
@ -299,168 +328,39 @@ def warp(img, ang):
config.make(w, h, ang)
new_img = img
prob = 0.4
if config.distort:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = tia_distort(new_img, random.randint(3, 6))
if config.stretch:
img_height, img_width = img.shape[0:2]
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = tia_stretch(new_img, random.randint(3, 6))
if config.perspective:
tp = random.randint(1, 100)
if tp >= 50:
warpR, (r1, c1), ratio, dst = get_warpR(config)
new_w = int(np.max(dst[:, 0])) - int(np.min(dst[:, 0]))
new_img = cv2.warpPerspective(
new_img,
warpR, (int(new_w * ratio), h),
borderMode=config.borderMode)
if random.random() <= prob:
new_img = tia_perspective(new_img)
if config.crop:
img_height, img_width = img.shape[0:2]
tp = random.randint(1, 100)
if tp >= 50 and img_height >= 20 and img_width >= 20:
if random.random() <= prob and img_height >= 20 and img_width >= 20:
new_img = get_crop(new_img)
if config.affine:
warpT = get_warpAffine(config)
new_img = cv2.warpAffine(
new_img, warpT, (w, h), borderMode=config.borderMode)
if config.blur:
tp = random.randint(1, 100)
if tp >= 50:
if random.random() <= prob:
new_img = blur(new_img)
if config.color:
tp = random.randint(1, 100)
if tp >= 50:
if random.random() <= prob:
new_img = cvtColor(new_img)
if config.jitter:
new_img = jitter(new_img)
if config.noise:
tp = random.randint(1, 100)
if tp >= 50:
if random.random() <= prob:
new_img = add_gasuss_noise(new_img)
if config.reverse:
tp = random.randint(1, 100)
if tp >= 50:
if random.random() <= prob:
new_img = 255 - new_img
return new_img
def process_image(img,
image_shape,
label=None,
char_ops=None,
loss_type=None,
max_text_length=None,
tps=None,
infer_mode=False,
distort=False):
if distort:
img = warp(img, 10)
if infer_mode and char_ops.character_type == "ch" and not tps:
norm_img = resize_norm_img_chinese(img, image_shape)
else:
norm_img = resize_norm_img(img, image_shape)
norm_img = norm_img[np.newaxis, :]
if label is not None:
# char_num = char_ops.get_char_num()
text = char_ops.encode(label)
if len(text) == 0 or len(text) > max_text_length:
logger.info(
"Warning in ppocr/data/rec/img_tools.py: Wrong data type."
"Excepted string with length between 1 and {}, but "
"got '{}'. Label is '{}'".format(max_text_length,
len(text), label))
return None
else:
if loss_type == "ctc":
text = text.reshape(-1, 1)
return (norm_img, text)
elif loss_type == "attention":
beg_flag_idx = char_ops.get_beg_end_flag_idx("beg")
end_flag_idx = char_ops.get_beg_end_flag_idx("end")
beg_text = np.append(beg_flag_idx, text)
end_text = np.append(text, end_flag_idx)
beg_text = beg_text.reshape(-1, 1)
end_text = end_text.reshape(-1, 1)
return (norm_img, beg_text, end_text)
else:
assert False, "Unsupport loss_type %s in process_image"\
% loss_type
return (norm_img)
def resize_norm_img_srn(img, image_shape):
imgC, imgH, imgW = image_shape
img_black = np.zeros((imgH, imgW))
im_hei = img.shape[0]
im_wid = img.shape[1]
if im_wid <= im_hei * 1:
img_new = cv2.resize(img, (imgH * 1, imgH))
elif im_wid <= im_hei * 2:
img_new = cv2.resize(img, (imgH * 2, imgH))
elif im_wid <= im_hei * 3:
img_new = cv2.resize(img, (imgH * 3, imgH))
else:
img_new = cv2.resize(img, (imgW, imgH))
img_np = np.asarray(img_new)
img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
img_black[:, 0:img_np.shape[1]] = img_np
img_black = img_black[:, :, np.newaxis]
row, col, c = img_black.shape
c = 1
return np.reshape(img_black, (c, row, col)).astype(np.float32)
def srn_other_inputs(image_shape,
num_heads,
max_text_length,
char_num):
imgC, imgH, imgW = image_shape
feature_dim = int((imgH / 8) * (imgW / 8))
encoder_word_pos = np.array(range(0, feature_dim)).reshape((feature_dim, 1)).astype('int64')
gsrm_word_pos = np.array(range(0, max_text_length)).reshape((max_text_length, 1)).astype('int64')
lbl_weight = np.array([int(char_num-1)] * max_text_length).reshape((-1,1)).astype('int64')
gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length))
gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape([-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias1 = np.tile(gsrm_slf_attn_bias1, [1, num_heads, 1, 1]) * [-1e9]
gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape([-1, 1, max_text_length, max_text_length])
gsrm_slf_attn_bias2 = np.tile(gsrm_slf_attn_bias2, [1, num_heads, 1, 1]) * [-1e9]
encoder_word_pos = encoder_word_pos[np.newaxis, :]
gsrm_word_pos = gsrm_word_pos[np.newaxis, :]
return [lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2]
def process_image_srn(img,
image_shape,
num_heads,
max_text_length,
label=None,
char_ops=None,
loss_type=None):
norm_img = resize_norm_img_srn(img, image_shape)
norm_img = norm_img[np.newaxis, :]
char_num = char_ops.get_char_num()
[lbl_weight, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \
srn_other_inputs(image_shape, num_heads, max_text_length,char_num)
if label is not None:
text = char_ops.encode(label)
if len(text) == 0 or len(text) > max_text_length:
return None
else:
if loss_type == "srn":
text_padded = [int(char_num-1)] * max_text_length
for i in range(len(text)):
text_padded[i] = text[i]
lbl_weight[i] = [1.0]
text_padded = np.array(text_padded)
text = text_padded.reshape(-1, 1)
return (norm_img, text,encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2,lbl_weight)
else:
assert False, "Unsupport loss_type %s in process_image"\
% loss_type
return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2)

View File

@ -1,13 +1,17 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .augment import tia_perspective, tia_distort, tia_stretch
__all__ = ['tia_distort', 'tia_stretch', 'tia_perspective']

View File

@ -0,0 +1,116 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from .warp_mls import WarpMLS
def tia_distort(src, segment=4):
img_h, img_w = src.shape[:2]
cut = img_w // segment
thresh = cut // 3
src_pts = list()
dst_pts = list()
src_pts.append([0, 0])
src_pts.append([img_w, 0])
src_pts.append([img_w, img_h])
src_pts.append([0, img_h])
dst_pts.append([np.random.randint(thresh), np.random.randint(thresh)])
dst_pts.append(
[img_w - np.random.randint(thresh), np.random.randint(thresh)])
dst_pts.append(
[img_w - np.random.randint(thresh), img_h - np.random.randint(thresh)])
dst_pts.append(
[np.random.randint(thresh), img_h - np.random.randint(thresh)])
half_thresh = thresh * 0.5
for cut_idx in np.arange(1, segment, 1):
src_pts.append([cut * cut_idx, 0])
src_pts.append([cut * cut_idx, img_h])
dst_pts.append([
cut * cut_idx + np.random.randint(thresh) - half_thresh,
np.random.randint(thresh) - half_thresh
])
dst_pts.append([
cut * cut_idx + np.random.randint(thresh) - half_thresh,
img_h + np.random.randint(thresh) - half_thresh
])
trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h)
dst = trans.generate()
return dst
def tia_stretch(src, segment=4):
img_h, img_w = src.shape[:2]
cut = img_w // segment
thresh = cut * 4 // 5
src_pts = list()
dst_pts = list()
src_pts.append([0, 0])
src_pts.append([img_w, 0])
src_pts.append([img_w, img_h])
src_pts.append([0, img_h])
dst_pts.append([0, 0])
dst_pts.append([img_w, 0])
dst_pts.append([img_w, img_h])
dst_pts.append([0, img_h])
half_thresh = thresh * 0.5
for cut_idx in np.arange(1, segment, 1):
move = np.random.randint(thresh) - half_thresh
src_pts.append([cut * cut_idx, 0])
src_pts.append([cut * cut_idx, img_h])
dst_pts.append([cut * cut_idx + move, 0])
dst_pts.append([cut * cut_idx + move, img_h])
trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h)
dst = trans.generate()
return dst
def tia_perspective(src):
img_h, img_w = src.shape[:2]
thresh = img_h // 2
src_pts = list()
dst_pts = list()
src_pts.append([0, 0])
src_pts.append([img_w, 0])
src_pts.append([img_w, img_h])
src_pts.append([0, img_h])
dst_pts.append([0, np.random.randint(thresh)])
dst_pts.append([img_w, np.random.randint(thresh)])
dst_pts.append([img_w, img_h - np.random.randint(thresh)])
dst_pts.append([0, img_h - np.random.randint(thresh)])
trans = WarpMLS(src, src_pts, dst_pts, img_w, img_h)
dst = trans.generate()
return dst

View File

@ -0,0 +1,164 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
class WarpMLS:
def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.):
self.src = src
self.src_pts = src_pts
self.dst_pts = dst_pts
self.pt_count = len(self.dst_pts)
self.dst_w = dst_w
self.dst_h = dst_h
self.trans_ratio = trans_ratio
self.grid_size = 100
self.rdx = np.zeros((self.dst_h, self.dst_w))
self.rdy = np.zeros((self.dst_h, self.dst_w))
@staticmethod
def __bilinear_interp(x, y, v11, v12, v21, v22):
return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 *
(1 - y) + v22 * y) * x
def generate(self):
self.calc_delta()
return self.gen_img()
def calc_delta(self):
w = np.zeros(self.pt_count, dtype=np.float32)
if self.pt_count < 2:
return
i = 0
while 1:
if self.dst_w <= i < self.dst_w + self.grid_size - 1:
i = self.dst_w - 1
elif i >= self.dst_w:
break
j = 0
while 1:
if self.dst_h <= j < self.dst_h + self.grid_size - 1:
j = self.dst_h - 1
elif j >= self.dst_h:
break
sw = 0
swp = np.zeros(2, dtype=np.float32)
swq = np.zeros(2, dtype=np.float32)
new_pt = np.zeros(2, dtype=np.float32)
cur_pt = np.array([i, j], dtype=np.float32)
k = 0
for k in range(self.pt_count):
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
break
w[k] = 1. / (
(i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) +
(j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1]))
sw += w[k]
swp = swp + w[k] * np.array(self.dst_pts[k])
swq = swq + w[k] * np.array(self.src_pts[k])
if k == self.pt_count - 1:
pstar = 1 / sw * swp
qstar = 1 / sw * swq
miu_s = 0
for k in range(self.pt_count):
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
continue
pt_i = self.dst_pts[k] - pstar
miu_s += w[k] * np.sum(pt_i * pt_i)
cur_pt -= pstar
cur_pt_j = np.array([-cur_pt[1], cur_pt[0]])
for k in range(self.pt_count):
if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
continue
pt_i = self.dst_pts[k] - pstar
pt_j = np.array([-pt_i[1], pt_i[0]])
tmp_pt = np.zeros(2, dtype=np.float32)
tmp_pt[0] = np.sum(pt_i * cur_pt) * self.src_pts[k][0] - \
np.sum(pt_j * cur_pt) * self.src_pts[k][1]
tmp_pt[1] = -np.sum(pt_i * cur_pt_j) * self.src_pts[k][0] + \
np.sum(pt_j * cur_pt_j) * self.src_pts[k][1]
tmp_pt *= (w[k] / miu_s)
new_pt += tmp_pt
new_pt += qstar
else:
new_pt = self.src_pts[k]
self.rdx[j, i] = new_pt[0] - i
self.rdy[j, i] = new_pt[1] - j
j += self.grid_size
i += self.grid_size
def gen_img(self):
src_h, src_w = self.src.shape[:2]
dst = np.zeros_like(self.src, dtype=np.float32)
for i in np.arange(0, self.dst_h, self.grid_size):
for j in np.arange(0, self.dst_w, self.grid_size):
ni = i + self.grid_size
nj = j + self.grid_size
w = h = self.grid_size
if ni >= self.dst_h:
ni = self.dst_h - 1
h = ni - i + 1
if nj >= self.dst_w:
nj = self.dst_w - 1
w = nj - j + 1
di = np.reshape(np.arange(h), (-1, 1))
dj = np.reshape(np.arange(w), (1, -1))
delta_x = self.__bilinear_interp(
di / h, dj / w, self.rdx[i, j], self.rdx[i, nj],
self.rdx[ni, j], self.rdx[ni, nj])
delta_y = self.__bilinear_interp(
di / h, dj / w, self.rdy[i, j], self.rdy[i, nj],
self.rdy[ni, j], self.rdy[ni, nj])
nx = j + dj + delta_x * self.trans_ratio
ny = i + di + delta_y * self.trans_ratio
nx = np.clip(nx, 0, src_w - 1)
ny = np.clip(ny, 0, src_h - 1)
nxi = np.array(np.floor(nx), dtype=np.int32)
nyi = np.array(np.floor(ny), dtype=np.int32)
nxi1 = np.array(np.ceil(nx), dtype=np.int32)
nyi1 = np.array(np.ceil(ny), dtype=np.int32)
if len(self.src.shape) == 3:
x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3))
y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3))
else:
x = ny - nyi
y = nx - nxi
dst[i:i + h, j:j + w] = self.__bilinear_interp(
x, y, self.src[nyi, nxi], self.src[nyi, nxi1],
self.src[nyi1, nxi], self.src[nyi1, nxi1])
dst = np.clip(dst, 0, 255)
dst = np.array(dst, dtype=np.uint8)
return dst

View File

@ -1,77 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import random
import numpy as np
import paddle
from ppocr.utils.utility import create_module
from copy import deepcopy
from .rec.img_tools import process_image
import cv2
import sys
import signal
# handle terminate reader process, do not print stack frame
def _reader_quit(signum, frame):
print("Reader process exit.")
sys.exit()
def _term_group(sig_num, frame):
print('pid {} terminated, terminate group '
'{}...'.format(os.getpid(), os.getpgrp()))
os.killpg(os.getpgid(os.getpid()), signal.SIGKILL)
signal.signal(signal.SIGTERM, _reader_quit)
signal.signal(signal.SIGINT, _term_group)
def reader_main(config=None, mode=None):
"""Create a reader for trainning
Args:
settings: arguments
Returns:
train reader
"""
assert mode in ["train", "eval", "test"],\
"Nonsupport mode:{}".format(mode)
global_params = config['Global']
if mode == "train":
params = deepcopy(config['TrainReader'])
elif mode == "eval":
params = deepcopy(config['EvalReader'])
else:
params = deepcopy(config['TestReader'])
params['mode'] = mode
params.update(global_params)
reader_function = params['reader_function']
function = create_module(reader_function)(params)
if mode == "train":
if sys.platform == "win32":
return function(0)
readers = []
num_workers = params['num_workers']
for process_id in range(num_workers):
readers.append(function(process_id))
return paddle.reader.multiprocess_reader(readers, False)
else:
return function(mode)

View File

@ -1,335 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import os
import sys
import math
import random
import numpy as np
import cv2
import string
import lmdb
from ppocr.utils.utility import initial_logger
from ppocr.utils.utility import get_image_file_list
logger = initial_logger()
from .img_tools import process_image, process_image_srn, get_img_data
class LMDBReader(object):
def __init__(self, params):
if params['mode'] != 'train':
self.num_workers = 1
else:
self.num_workers = params['num_workers']
self.lmdb_sets_dir = params['lmdb_sets_dir']
self.char_ops = params['char_ops']
self.image_shape = params['image_shape']
self.loss_type = params['loss_type']
self.max_text_length = params['max_text_length']
self.mode = params['mode']
self.drop_last = False
self.use_tps = False
self.num_heads = None
if "num_heads" in params:
self.num_heads = params['num_heads']
if "tps" in params:
self.ues_tps = True
self.use_distort = False
if "distort" in params:
self.use_distort = params['distort'] and params['use_gpu']
if not params['use_gpu']:
logger.info(
"Distort operation can only support in GPU. Distort will be set to False."
)
if params['mode'] == 'train':
self.batch_size = params['train_batch_size_per_card']
self.drop_last = True
else:
self.batch_size = params['test_batch_size_per_card']
self.drop_last = False
self.use_distort = False
self.infer_img = params['infer_img']
def load_hierarchical_lmdb_dataset(self):
lmdb_sets = {}
dataset_idx = 0
for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
if not dirnames:
env = lmdb.open(
dirpath,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False)
txn = env.begin(write=False)
num_samples = int(txn.get('num-samples'.encode()))
lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
"txn":txn, "num_samples":num_samples}
dataset_idx += 1
return lmdb_sets
def print_lmdb_sets_info(self, lmdb_sets):
lmdb_info_strs = []
for dataset_idx in range(len(lmdb_sets)):
tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
lmdb_sets[dataset_idx]['num_samples'])
lmdb_info_strs.append(tmp_str)
lmdb_info_strs = ''.join(lmdb_info_strs)
logger.info("DataSummary:" + lmdb_info_strs)
return
def close_lmdb_dataset(self, lmdb_sets):
for dataset_idx in lmdb_sets:
lmdb_sets[dataset_idx]['env'].close()
return
def get_lmdb_sample_info(self, txn, index):
label_key = 'label-%09d'.encode() % index
label = txn.get(label_key)
if label is None:
return None
label = label.decode('utf-8')
img_key = 'image-%09d'.encode() % index
imgbuf = txn.get(img_key)
img = get_img_data(imgbuf)
if img is None:
return None
return img, label
def __call__(self, process_id):
if self.mode != 'train':
process_id = 0
def sample_iter_reader():
if self.mode != 'train' and self.infer_img is not None:
image_file_list = get_image_file_list(self.infer_img)
for single_img in image_file_list:
img = cv2.imread(single_img)
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if self.loss_type == 'srn':
norm_img = process_image_srn(
img=img,
image_shape=self.image_shape,
num_heads=self.num_heads,
max_text_length=self.max_text_length)
else:
norm_img = process_image(
img=img,
image_shape=self.image_shape,
char_ops=self.char_ops,
tps=self.use_tps,
infer_mode=True)
yield norm_img
else:
lmdb_sets = self.load_hierarchical_lmdb_dataset()
if process_id == 0:
self.print_lmdb_sets_info(lmdb_sets)
cur_index_sets = [1 + process_id] * len(lmdb_sets)
while True:
finish_read_num = 0
for dataset_idx in range(len(lmdb_sets)):
cur_index = cur_index_sets[dataset_idx]
if cur_index > lmdb_sets[dataset_idx]['num_samples']:
finish_read_num += 1
else:
sample_info = self.get_lmdb_sample_info(
lmdb_sets[dataset_idx]['txn'], cur_index)
cur_index_sets[dataset_idx] += self.num_workers
if sample_info is None:
continue
img, label = sample_info
outs = []
if self.loss_type == "srn":
outs = process_image_srn(
img=img,
image_shape=self.image_shape,
num_heads=self.num_heads,
max_text_length=self.max_text_length,
label=label,
char_ops=self.char_ops,
loss_type=self.loss_type)
else:
outs = process_image(
img=img,
image_shape=self.image_shape,
label=label,
char_ops=self.char_ops,
loss_type=self.loss_type,
max_text_length=self.max_text_length)
if outs is None:
continue
yield outs
if finish_read_num == len(lmdb_sets):
break
self.close_lmdb_dataset(lmdb_sets)
def batch_iter_reader():
batch_outs = []
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
if not self.drop_last:
if len(batch_outs) != 0:
yield batch_outs
if self.infer_img is None:
return batch_iter_reader
return sample_iter_reader
class SimpleReader(object):
def __init__(self, params):
if params['mode'] != 'train':
self.num_workers = 1
else:
self.num_workers = params['num_workers']
if params['mode'] != 'test':
self.img_set_dir = params['img_set_dir']
self.label_file_path = params['label_file_path']
self.use_gpu = params['use_gpu']
self.char_ops = params['char_ops']
self.image_shape = params['image_shape']
self.loss_type = params['loss_type']
self.max_text_length = params['max_text_length']
self.mode = params['mode']
self.infer_img = params['infer_img']
self.use_tps = False
if "num_heads" in params:
self.num_heads = params['num_heads']
if "tps" in params:
self.use_tps = True
self.use_distort = False
if "distort" in params:
self.use_distort = params['distort'] and params['use_gpu']
if not params['use_gpu']:
logger.info(
"Distort operation can only support in GPU.Distort will be set to False."
)
if params['mode'] == 'train':
self.batch_size = params['train_batch_size_per_card']
self.drop_last = True
else:
self.batch_size = params['test_batch_size_per_card']
self.drop_last = False
self.use_distort = False
def __call__(self, process_id):
if self.mode != 'train':
process_id = 0
def get_device_num():
if self.use_gpu:
gpus = os.environ.get("CUDA_VISIBLE_DEVICES", '1')
gpu_num = len(gpus.split(','))
return gpu_num
else:
cpu_num = os.environ.get("CPU_NUM", 1)
return int(cpu_num)
def sample_iter_reader():
if self.mode != 'train' and self.infer_img is not None:
image_file_list = get_image_file_list(self.infer_img)
for single_img in image_file_list:
img = cv2.imread(single_img)
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if self.loss_type == 'srn':
norm_img = process_image_srn(
img=img,
image_shape=self.image_shape,
char_ops=self.char_ops,
num_heads=self.num_heads,
max_text_length=self.max_text_length)
else:
norm_img = process_image(
img=img,
image_shape=self.image_shape,
char_ops=self.char_ops,
tps=self.use_tps,
infer_mode=True)
yield norm_img
else:
with open(self.label_file_path, "rb") as fin:
label_infor_list = fin.readlines()
img_num = len(label_infor_list)
img_id_list = list(range(img_num))
random.shuffle(img_id_list)
if sys.platform == "win32" and self.num_workers != 1:
print("multiprocess is not fully compatible with Windows."
"num_workers will be 1.")
self.num_workers = 1
if self.batch_size * get_device_num(
) * self.num_workers > img_num:
raise Exception(
"The number of the whole data ({}) is smaller than the batch_size * devices_num * num_workers ({})".
format(img_num, self.batch_size * get_device_num() *
self.num_workers))
for img_id in range(process_id, img_num, self.num_workers):
label_infor = label_infor_list[img_id_list[img_id]]
substr = label_infor.decode('utf-8').strip("\n").split("\t")
img_path = self.img_set_dir + "/" + substr[0]
img = cv2.imread(img_path)
if img is None:
logger.info("{} does not exist!".format(img_path))
continue
if img.shape[-1] == 1 or len(list(img.shape)) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
label = substr[1]
if self.loss_type == "srn":
outs = process_image_srn(
img=img,
image_shape=self.image_shape,
num_heads=self.num_heads,
max_text_length=self.max_text_length,
label=label,
char_ops=self.char_ops,
loss_type=self.loss_type)
else:
outs = process_image(
img=img,
image_shape=self.image_shape,
label=label,
char_ops=self.char_ops,
loss_type=self.loss_type,
max_text_length=self.max_text_length,
distort=self.use_distort)
if outs is None:
continue
yield outs
def batch_iter_reader():
batch_outs = []
for outs in sample_iter_reader():
batch_outs.append(outs)
if len(batch_outs) == self.batch_size:
yield batch_outs
batch_outs = []
if not self.drop_last:
if len(batch_outs) != 0:
yield batch_outs
if self.infer_img is None:
return batch_iter_reader
return sample_iter_reader

View File

@ -0,0 +1,72 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__all__ = ['DetMetric']
from .eval_det_iou import DetectionIoUEvaluator
class DetMetric(object):
def __init__(self, main_indicator='hmean', **kwargs):
self.evaluator = DetectionIoUEvaluator()
self.main_indicator = main_indicator
self.reset()
def __call__(self, preds, batch, **kwargs):
'''
batch: a list produced by dataloaders.
image: np.ndarray of shape (N, C, H, W).
ratio_list: np.ndarray of shape(N,2)
polygons: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
ignore_tags: np.ndarray of shape (N, K), indicates whether a region is ignorable or not.
preds: a list of dict produced by post process
points: np.ndarray of shape (N, K, 4, 2), the polygons of objective regions.
'''
gt_polyons_batch = batch[2]
ignore_tags_batch = batch[3]
for pred, gt_polyons, ignore_tags in zip(preds, gt_polyons_batch,
ignore_tags_batch):
# prepare gt
gt_info_list = [{
'points': gt_polyon,
'text': '',
'ignore': ignore_tag
} for gt_polyon, ignore_tag in zip(gt_polyons, ignore_tags)]
# prepare det
det_info_list = [{
'points': det_polyon,
'text': ''
} for det_polyon in pred['points']]
result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
self.results.append(result)
def get_metric(self):
"""
return metircs {
'precision': 0,
'recall': 0,
'hmean': 0
}
"""
metircs = self.evaluator.combine_results(self.results)
self.reset()
return metircs
def reset(self):
self.results = [] # clear results

View File

@ -0,0 +1,59 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import Levenshtein
class RecMetric(object):
def __init__(self, main_indicator='acc', **kwargs):
self.main_indicator = main_indicator
self.reset()
def __call__(self, pred_label, *args, **kwargs):
preds, labels = pred_label
correct_num = 0
all_num = 0
norm_edit_dis = 0.0
for (pred, pred_conf), (target, _) in zip(preds, labels):
norm_edit_dis += Levenshtein.distance(pred, target) / max(
len(pred), len(target))
if pred == target:
correct_num += 1
all_num += 1
# if all_num < 10 and kwargs.get('show_str', False):
# print('{} -> {}'.format(pred, target))
self.correct_num += correct_num
self.all_num += all_num
self.norm_edit_dis += norm_edit_dis
return {
'acc': correct_num / all_num,
'norm_edit_dis': 1 - norm_edit_dis / all_num
}
def get_metric(self):
"""
return metircs {
'acc': 0,
'norm_edit_dis': 0,
}
"""
acc = self.correct_num / self.all_num
norm_edit_dis = 1 - self.norm_edit_dis / self.all_num
self.reset()
return {'acc': acc, 'norm_edit_dis': norm_edit_dis}
def reset(self):
self.correct_num = 0
self.all_num = 0
self.norm_edit_dis = 0

36
ppocr/metrics/__init__.py Normal file
View File

@ -0,0 +1,36 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
__all__ = ['build_metric']
def build_metric(config):
from .DetMetric import DetMetric
from .RecMetric import RecMetric
support_dict = ['DetMetric', 'RecMetric']
config = copy.deepcopy(config)
module_name = config.pop('name')
assert module_name in support_dict, Exception(
'metric only support {}'.format(support_dict))
module_class = eval(module_name)(**config)
return module_class

View File

@ -88,8 +88,8 @@ class DetectionIoUEvaluator(object):
points = gt[n]['points']
# transcription = gt[n]['text']
dontCare = gt[n]['ignore']
# points = Polygon(points)
# points = points.buffer(0)
# points = Polygon(points)
# points = points.buffer(0)
if not Polygon(points).is_valid or not Polygon(points).is_simple:
continue
@ -105,8 +105,8 @@ class DetectionIoUEvaluator(object):
for n in range(len(pred)):
points = pred[n]['points']
# points = Polygon(points)
# points = points.buffer(0)
# points = Polygon(points)
# points = points.buffer(0)
if not Polygon(points).is_valid or not Polygon(points).is_simple:
continue

View File

@ -11,3 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from .losses import build_loss
__all__ = ['build_model', 'build_loss']
def build_model(config):
from .architectures import Model
config = copy.deepcopy(config)
module_class = Model(config)
return module_class

View File

@ -11,3 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .model import Model
__all__ = ['Model']

View File

@ -1,146 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy
class DetModel(object):
def __init__(self, params):
"""
Detection module for OCR text detection.
args:
params (dict): the super parameters for detection module.
"""
global_params = params['Global']
self.algorithm = global_params['algorithm']
backbone_params = deepcopy(params["Backbone"])
backbone_params.update(global_params)
self.backbone = create_module(backbone_params['function'])\
(params=backbone_params)
head_params = deepcopy(params["Head"])
head_params.update(global_params)
self.head = create_module(head_params['function'])\
(params=head_params)
loss_params = deepcopy(params["Loss"])
loss_params.update(global_params)
self.loss = create_module(loss_params['function'])\
(params=loss_params)
self.image_shape = global_params['image_shape']
def create_feed(self, mode):
"""
create Dataloader feeds
args:
mode (str): 'train' for training or else for evaluation
return: (image, corresponding label, dataloader)
"""
image_shape = deepcopy(self.image_shape)
if image_shape[1] % 4 != 0 or image_shape[2] % 4 != 0:
raise Exception("The size of the image must be divisible by 4, "
"received image shape is {}, please reset the "
"Global.image_shape in the yml file".format(
image_shape))
image = fluid.layers.data(
name='image', shape=image_shape, dtype='float32')
if mode == "train":
if self.algorithm == "EAST":
h, w = int(image_shape[1] // 4), int(image_shape[2] // 4)
score = fluid.layers.data(
name='score', shape=[1, h, w], dtype='float32')
geo = fluid.layers.data(
name='geo', shape=[9, h, w], dtype='float32')
mask = fluid.layers.data(
name='mask', shape=[1, h, w], dtype='float32')
feed_list = [image, score, geo, mask]
labels = {'score': score, 'geo': geo, 'mask': mask}
elif self.algorithm == "DB":
shrink_map = fluid.layers.data(
name='shrink_map', shape=image_shape[1:], dtype='float32')
shrink_mask = fluid.layers.data(
name='shrink_mask', shape=image_shape[1:], dtype='float32')
threshold_map = fluid.layers.data(
name='threshold_map',
shape=image_shape[1:],
dtype='float32')
threshold_mask = fluid.layers.data(
name='threshold_mask',
shape=image_shape[1:],
dtype='float32')
feed_list=[image, shrink_map, shrink_mask,\
threshold_map, threshold_mask]
labels = {'shrink_map':shrink_map,\
'shrink_mask':shrink_mask,\
'threshold_map':threshold_map,\
'threshold_mask':threshold_mask}
elif self.algorithm == "SAST":
input_score = fluid.layers.data(
name='score', shape=[1, 128, 128], dtype='float32')
input_border = fluid.layers.data(
name='border', shape=[5, 128, 128], dtype='float32')
input_mask = fluid.layers.data(
name='mask', shape=[1, 128, 128], dtype='float32')
input_tvo = fluid.layers.data(
name='tvo', shape=[9, 128, 128], dtype='float32')
input_tco = fluid.layers.data(
name='tco', shape=[3, 128, 128], dtype='float32')
feed_list = [image, input_score, input_border, input_mask, input_tvo, input_tco]
labels = {'input_score': input_score,\
'input_border': input_border,\
'input_mask': input_mask,\
'input_tvo': input_tvo,\
'input_tco': input_tco}
loader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=64,
use_double_buffer=True,
iterable=False)
else:
labels = None
loader = None
return image, labels, loader
def __call__(self, mode):
"""
run forward of defined module
args:
mode (str): 'train' for training; 'export' for inference,
others for evaluation]
"""
image, labels, loader = self.create_feed(mode)
conv_feas = self.backbone(image)
if self.algorithm == "DB":
predicts = self.head(conv_feas, mode)
else:
predicts = self.head(conv_feas)
if mode == "train":
losses = self.loss(predicts, labels)
return loader, losses
elif mode == "export":
return [image, predicts]
else:
return loader, predicts

View File

@ -0,0 +1,129 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append('/home/zhoujun20/PaddleOCR')
import paddle
from paddle import nn
from ppocr.modeling.transform import build_transform
from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head
__all__ = ['Model']
class Model(nn.Layer):
def __init__(self, config):
"""
Detection module for OCR.
args:
config (dict): the super parameters for module.
"""
super(Model, self).__init__()
algorithm = config['algorithm']
self.type = config['type']
self.model_name = '{}_{}'.format(self.type, algorithm)
in_channels = config.get('in_channels', 3)
# build transfrom,
# for rec, transfrom can be TPS,None
# for det and cls, transfrom shoule to be None,
# if you make model differently, you can use transfrom in det and cls
if 'Transform' not in config or config['Transform'] is None:
self.use_transform = False
else:
self.use_transform = True
config['Transform']['in_channels'] = in_channels
self.transform = build_transform(config['Transform'])
in_channels = self.transform.out_channels
# build backbone, backbone is need for del, rec and cls
config["Backbone"]['in_channels'] = in_channels
self.backbone = build_backbone(config["Backbone"], self.type)
in_channels = self.backbone.out_channels
# build neck
# for rec, neck can be cnn,rnn or reshape(None)
# for det, neck can be FPN, BIFPN and so on.
# for cls, neck should be none
if 'Neck' not in config or config['Neck'] is None:
self.use_neck = False
else:
self.use_neck = True
config['Neck']['in_channels'] = in_channels
self.neck = build_neck(config['Neck'])
in_channels = self.neck.out_channels
# # build head, head is need for del, rec and cls
config["Head"]['in_channels'] = in_channels
self.head = build_head(config["Head"])
# @paddle.jit.to_static
def forward(self, x):
if self.use_transform:
x = self.transform(x)
x = self.backbone(x)
if self.use_neck:
x = self.neck(x)
x = self.head(x)
return x
def check_static():
import numpy as np
from ppocr.utils.save_load import load_dygraph_pretrain
from ppocr.utils.logging import get_logger
from tools import program
config = program.load_config('configs/det/det_r50_vd_db.yml')
# import cv2
# data = cv2.imread('doc/imgs/1.jpg')
# data = normalize(data)
logger = get_logger()
data = np.zeros((1, 3, 640, 640), dtype=np.float32)
paddle.disable_static()
config['Architecture']['in_channels'] = 3
config['Architecture']["Head"]['out_channels'] = 6624
model = Model(config['Architecture'])
model.eval()
load_dygraph_pretrain(
model,
logger,
'/Users/zhoujun20/Desktop/code/PaddleOCR/db/db',
load_static_weights=True)
x = paddle.to_variable(data)
y = model(x)
for y1 in y:
print(y1.shape)
#
# # from matplotlib import pyplot as plt
# # plt.imshow(y.numpy())
# # plt.show()
static_out = np.load('/Users/zhoujun20/Desktop/code/PaddleOCR/db/db.npy')
diff = y.numpy() - static_out
print(y.shape, static_out.shape, diff.mean())
if __name__ == '__main__':
check_static()

View File

@ -1,228 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
logger = initial_logger()
from copy import deepcopy
class RecModel(object):
def __init__(self, params):
super(RecModel, self).__init__()
global_params = params['Global']
char_num = global_params['char_ops'].get_char_num()
global_params['char_num'] = char_num
self.char_type = global_params['character_type']
self.infer_img = global_params['infer_img']
if "TPS" in params:
tps_params = deepcopy(params["TPS"])
tps_params.update(global_params)
self.tps = create_module(tps_params['function'])\
(params=tps_params)
else:
self.tps = None
backbone_params = deepcopy(params["Backbone"])
backbone_params.update(global_params)
self.backbone = create_module(backbone_params['function'])\
(params=backbone_params)
head_params = deepcopy(params["Head"])
head_params.update(global_params)
self.head = create_module(head_params['function'])\
(params=head_params)
loss_params = deepcopy(params["Loss"])
loss_params.update(global_params)
self.loss = create_module(loss_params['function'])\
(params=loss_params)
self.loss_type = global_params['loss_type']
self.image_shape = global_params['image_shape']
self.max_text_length = global_params['max_text_length']
if "num_heads" in global_params:
self.num_heads = global_params["num_heads"]
else:
self.num_heads = None
def create_feed(self, mode):
image_shape = deepcopy(self.image_shape)
image_shape.insert(0, -1)
if mode == "train":
image = fluid.data(name='image', shape=image_shape, dtype='float32')
if self.loss_type == "attention":
label_in = fluid.data(
name='label_in',
shape=[None, 1],
dtype='int32',
lod_level=1)
label_out = fluid.data(
name='label_out',
shape=[None, 1],
dtype='int32',
lod_level=1)
feed_list = [image, label_in, label_out]
labels = {'label_in': label_in, 'label_out': label_out}
elif self.loss_type == "srn":
encoder_word_pos = fluid.data(
name="encoder_word_pos",
shape=[
-1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
1
],
dtype="int64")
gsrm_word_pos = fluid.data(
name="gsrm_word_pos",
shape=[-1, self.max_text_length, 1],
dtype="int64")
gsrm_slf_attn_bias1 = fluid.data(
name="gsrm_slf_attn_bias1",
shape=[
-1, self.num_heads, self.max_text_length,
self.max_text_length
],
dtype="float32")
gsrm_slf_attn_bias2 = fluid.data(
name="gsrm_slf_attn_bias2",
shape=[
-1, self.num_heads, self.max_text_length,
self.max_text_length
],
dtype="float32")
lbl_weight = fluid.layers.data(
name="lbl_weight", shape=[-1, 1], dtype='int64')
label = fluid.data(
name='label', shape=[-1, 1], dtype='int32', lod_level=1)
feed_list = [
image, label, encoder_word_pos, gsrm_word_pos,
gsrm_slf_attn_bias1, gsrm_slf_attn_bias2, lbl_weight
]
labels = {
'label': label,
'encoder_word_pos': encoder_word_pos,
'gsrm_word_pos': gsrm_word_pos,
'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2,
'lbl_weight': lbl_weight
}
else:
label = fluid.data(
name='label', shape=[None, 1], dtype='int32', lod_level=1)
feed_list = [image, label]
labels = {'label': label}
loader = fluid.io.DataLoader.from_generator(
feed_list=feed_list,
capacity=64,
use_double_buffer=True,
iterable=False)
else:
labels = None
loader = None
if self.char_type == "ch" and self.infer_img:
image_shape[-1] = -1
if self.tps != None:
logger.info(
"WARNRNG!!!\n"
"TPS does not support variable shape in chinese!"
"We set img_shape to be the same , it may affect the inference effect"
)
image_shape = deepcopy(self.image_shape)
image = fluid.data(name='image', shape=image_shape, dtype='float32')
if self.loss_type == "srn":
encoder_word_pos = fluid.data(
name="encoder_word_pos",
shape=[
-1, int((image_shape[-2] / 8) * (image_shape[-1] / 8)),
1
],
dtype="int64")
gsrm_word_pos = fluid.data(
name="gsrm_word_pos",
shape=[-1, self.max_text_length, 1],
dtype="int64")
gsrm_slf_attn_bias1 = fluid.data(
name="gsrm_slf_attn_bias1",
shape=[
-1, self.num_heads, self.max_text_length,
self.max_text_length
],
dtype="float32")
gsrm_slf_attn_bias2 = fluid.data(
name="gsrm_slf_attn_bias2",
shape=[
-1, self.num_heads, self.max_text_length,
self.max_text_length
],
dtype="float32")
feed_list = [
image, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1,
gsrm_slf_attn_bias2
]
labels = {
'encoder_word_pos': encoder_word_pos,
'gsrm_word_pos': gsrm_word_pos,
'gsrm_slf_attn_bias1': gsrm_slf_attn_bias1,
'gsrm_slf_attn_bias2': gsrm_slf_attn_bias2
}
return image, labels, loader
def __call__(self, mode):
image, labels, loader = self.create_feed(mode)
if self.tps is None:
inputs = image
else:
inputs = self.tps(image)
conv_feas = self.backbone(inputs)
predicts = self.head(conv_feas, labels, mode)
decoded_out = predicts['decoded_out']
if mode == "train":
loss = self.loss(predicts, labels)
if self.loss_type == "attention":
label = labels['label_out']
else:
label = labels['label']
if self.loss_type == 'srn':
total_loss, img_loss, word_loss = self.loss(predicts, labels)
outputs = {
'total_loss': total_loss,
'img_loss': img_loss,
'word_loss': word_loss,
'decoded_out': decoded_out,
'label': label
}
else:
outputs = {'total_loss':loss, 'decoded_out':\
decoded_out, 'label':label}
return loader, outputs
elif mode == "export":
predict = predicts['predict']
if self.loss_type == "ctc":
predict = fluid.layers.softmax(predict)
if self.loss_type == "srn":
raise Exception(
"Warning! SRN does not support export model currently")
return [image, {'decoded_out': decoded_out, 'predicts': predict}]
else:
predict = predicts['predict']
if self.loss_type == "ctc":
predict = fluid.layers.softmax(predict)
return loader, {'decoded_out': decoded_out, 'predicts': predict}

View File

@ -11,3 +11,26 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['build_backbone']
def build_backbone(config, model_type):
if model_type == 'det':
from .det_mobilenet_v3 import MobileNetV3
from .det_resnet_vd import ResNet
support_dict = ['MobileNetV3', 'ResNet', 'ResNet_SAST']
elif model_type == 'rec':
from .rec_mobilenet_v3 import MobileNetV3
from .rec_resnet_vd import ResNet
support_dict = ['MobileNetV3', 'ResNet', 'ResNet_FPN']
else:
raise NotImplementedError
module_name = config.pop('name')
assert module_name in support_dict, Exception(
'when model typs is {}, backbone only support {}'.format(model_type,
support_dict))
module_class = eval(module_name)(**config)
return module_class

View File

@ -1,40 +1,48 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
__all__ = ['MobileNetV3']
class MobileNetV3():
def __init__(self, params):
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MobileNetV3(nn.Layer):
def __init__(self, in_channels=3, model_name='large', scale=0.5, **kwargs):
"""
the MobilenetV3 backbone network for detection module.
Args:
params(dict): the super parameters for build network
"""
self.scale = params['scale']
model_name = params['model_name']
self.inplanes = 16
super(MobileNetV3, self).__init__()
if model_name == "large":
self.cfg = [
cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', 2],
@ -52,10 +60,9 @@ class MobileNetV3():
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
cls_ch_squeeze = 960
elif model_name == "small":
self.cfg = [
cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', 2],
[3, 72, 24, False, 'relu', 2],
@ -69,183 +76,203 @@ class MobileNetV3():
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
cls_ch_squeeze = 576
else:
raise NotImplementedError("mode[" + model_name +
"_model] is not implemented!")
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
assert self.scale in supported_scale, \
"supported scale are {} but input scale is {}".format(supported_scale, self.scale)
def __call__(self, input):
scale = self.scale
inplanes = self.inplanes
cfg = self.cfg
cls_ch_squeeze = self.cls_ch_squeeze
cls_ch_expand = self.cls_ch_expand
#conv1
conv = self.conv_bn_layer(
input,
filter_size=3,
num_filters=self.make_divisible(inplanes * scale),
assert scale in supported_scale, \
"supported scale are {} but input scale is {}".format(supported_scale, scale)
inplanes = 16
# conv1
self.conv = ConvBNLayer(
in_channels=in_channels,
out_channels=make_divisible(inplanes * scale),
kernel_size=3,
stride=2,
padding=1,
num_groups=1,
groups=1,
if_act=True,
act='hard_swish',
name='conv1')
self.stages = []
self.out_channels = []
block_list = []
i = 0
inplanes = self.make_divisible(inplanes * scale)
outs = []
for layer_cfg in cfg:
if layer_cfg[5] == 2 and i > 2:
outs.append(conv)
conv = self.residual_unit(
input=conv,
num_in_filter=inplanes,
num_mid_filter=self.make_divisible(scale * layer_cfg[1]),
num_out_filter=self.make_divisible(scale * layer_cfg[2]),
act=layer_cfg[4],
stride=layer_cfg[5],
filter_size=layer_cfg[0],
use_se=layer_cfg[3],
name='conv' + str(i + 2))
inplanes = self.make_divisible(scale * layer_cfg[2])
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in cfg:
if s == 2 and i > 2:
self.out_channels.append(inplanes)
self.stages.append(nn.Sequential(*block_list))
block_list = []
block_list.append(
ResidualUnit(
in_channels=inplanes,
mid_channels=make_divisible(scale * exp),
out_channels=make_divisible(scale * c),
kernel_size=k,
stride=s,
use_se=se,
act=nl,
name="conv" + str(i + 2)))
inplanes = make_divisible(scale * c)
i += 1
block_list.append(
ConvBNLayer(
in_channels=inplanes,
out_channels=make_divisible(scale * cls_ch_squeeze),
kernel_size=1,
stride=1,
padding=0,
groups=1,
if_act=True,
act='hard_swish',
name='conv_last'))
conv = self.conv_bn_layer(
input=conv,
filter_size=1,
num_filters=self.make_divisible(scale * cls_ch_squeeze),
stride=1,
padding=0,
num_groups=1,
if_act=True,
act='hard_swish',
name='conv_last')
outs.append(conv)
return outs
self.stages.append(nn.Sequential(*block_list))
self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
for i, stage in enumerate(self.stages):
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
name=None,
use_cudnn=True,
res_last_bn_init=False):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
def forward(self, x):
x = self.conv(x)
out_list = []
for stage in self.stages:
x = stage(x)
out_list.append(x)
return out_list
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups=1,
if_act=True,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.if_act = if_act
self.act = act
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(name=name + '_weights'),
groups=groups,
weight_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
if act == 'relu':
bn = fluid.layers.relu(bn)
elif act == 'hard_swish':
bn = fluid.layers.hard_swish(bn)
return bn
def make_divisible(self, v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=None,
param_attr=ParamAttr(name=name + "_bn_scale"),
bias_attr=ParamAttr(name=name + "_bn_offset"),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
def se_block(self, input, num_out_filter, ratio=4, name=None):
num_mid_filter = num_out_filter // ratio
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
conv1 = fluid.layers.conv2d(
input=pool,
filter_size=1,
num_filters=num_mid_filter,
act='relu',
param_attr=ParamAttr(name=name + '_1_weights'),
bias_attr=ParamAttr(name=name + '_1_offset'))
conv2 = fluid.layers.conv2d(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
act='hard_sigmoid',
param_attr=ParamAttr(name=name + '_2_weights'),
bias_attr=ParamAttr(name=name + '_2_offset'))
scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
return scale
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = F.relu(x)
elif self.act == "hard_swish":
x = F.hard_swish(x)
else:
print("The activation function is selected incorrectly.")
exit()
return x
def residual_unit(self,
input,
num_in_filter,
num_mid_filter,
num_out_filter,
stride,
filter_size,
act=None,
use_se=False,
name=None):
conv0 = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_mid_filter,
class ResidualUnit(nn.Layer):
def __init__(self,
in_channels,
mid_channels,
out_channels,
kernel_size,
stride,
use_se,
act=None,
name=''):
super(ResidualUnit, self).__init__()
self.if_shortcut = stride == 1 and in_channels == out_channels
self.if_se = use_se
self.expand_conv = ConvBNLayer(
in_channels=in_channels,
out_channels=mid_channels,
kernel_size=1,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + '_expand')
conv1 = self.conv_bn_layer(
input=conv0,
filter_size=filter_size,
num_filters=num_mid_filter,
name=name + "_expand")
self.bottleneck_conv = ConvBNLayer(
in_channels=mid_channels,
out_channels=mid_channels,
kernel_size=kernel_size,
stride=stride,
padding=int((filter_size - 1) // 2),
padding=int((kernel_size - 1) // 2),
groups=mid_channels,
if_act=True,
act=act,
num_groups=num_mid_filter,
use_cudnn=False,
name=name + '_depthwise')
if use_se:
conv1 = self.se_block(
input=conv1, num_out_filter=num_mid_filter, name=name + '_se')
conv2 = self.conv_bn_layer(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
name=name + "_depthwise")
if self.if_se:
self.mid_se = SEModule(mid_channels, name=name + "_se")
self.linear_conv = ConvBNLayer(
in_channels=mid_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
if_act=False,
name=name + '_linear',
res_last_bn_init=True)
if num_in_filter != num_out_filter or stride != 1:
return conv2
else:
return fluid.layers.elementwise_add(x=input, y=conv2, act=None)
act=None,
name=name + "_linear")
def forward(self, inputs):
x = self.expand_conv(inputs)
x = self.bottleneck_conv(x)
if self.if_se:
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = paddle.elementwise_add(inputs, x)
return x
class SEModule(nn.Layer):
def __init__(self, in_channels, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = nn.Pool2D(
pool_type="avg", global_pooling=True, use_cudnn=False)
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels // reduction,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
self.conv2 = nn.Conv2d(
in_channels=in_channels // reduction,
out_channels=in_channels,
kernel_size=1,
stride=1,
padding=0,
weight_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = F.hard_sigmoid(outputs)
return inputs * outputs

441
ppocr/modeling/backbones/det_resnet_vd.py Executable file → Normal file
View File

@ -1,252 +1,329 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle import nn
from paddle.nn import functional as F
from paddle import ParamAttr
__all__ = ["ResNet"]
class ResNet(object):
def __init__(self, params):
class ResNet(nn.Layer):
def __init__(self, in_channels=3, layers=50, **kwargs):
"""
the Resnet backbone network for detection module.
Args:
params(dict): the super parameters for network build
"""
self.layers = params['layers']
supported_layers = [18, 34, 50, 101, 152]
assert self.layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, self.layers)
self.is_3x3 = True
super(ResNet, self).__init__()
supported_layers = {
18: {
'depth': [2, 2, 2, 2],
'block_class': BasicBlock
},
34: {
'depth': [3, 4, 6, 3],
'block_class': BasicBlock
},
50: {
'depth': [3, 4, 6, 3],
'block_class': BottleneckBlock
},
101: {
'depth': [3, 4, 23, 3],
'block_class': BottleneckBlock
},
152: {
'depth': [3, 8, 36, 3],
'block_class': BottleneckBlock
},
200: {
'depth': [3, 12, 48, 3],
'block_class': BottleneckBlock
}
}
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
is_3x3 = True
depth = supported_layers[layers]['depth']
block_class = supported_layers[layers]['block_class']
def __call__(self, input):
layers = self.layers
is_3x3 = self.is_3x3
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_filters = [64, 128, 256, 512]
outs = []
conv = []
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
conv.append(
ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=7,
stride=2,
act='relu'))
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
conv.append(
ConvBNLayer(
in_channels=3,
out_channels=32,
kernel_size=3,
stride=2,
act='relu',
name='conv1_1'))
conv.append(
ConvBNLayer(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name='conv1_2'))
conv.append(
ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name='conv1_3'))
self.conv1 = nn.Sequential(*conv)
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stages = []
self.out_channels = []
in_ch = 64
for block_index in range(len(depth)):
block_list = []
for i in range(depth[block_index]):
if layers >= 50:
if layers in [101, 152, 200] and block_index == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
conv_name = "res" + str(block_index + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
conv_name = "res" + str(block_index +
2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
outs.append(conv)
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
outs.append(conv)
return outs
conv_name = "res" + str(block_index + 2) + chr(97 + i)
else:
conv_name = "res" + str(block_index + 2) + chr(97 + i)
block_list.append(
block_class(
in_channels=in_ch,
out_channels=num_filters[block_index],
stride=2 if i == 0 and block_index != 0 else 1,
if_first=block_index == i == 0,
name=conv_name))
in_ch = block_list[-1].out_channels
self.out_channels.append(in_ch)
self.stages.append(nn.Sequential(*block_list))
for i, stage in enumerate(self.stages):
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
out_list = []
for stage in self.stages:
x = stage(x)
out_list.append(x)
return out_list
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(filter_size - 1) // 2,
padding=(kernel_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
def __call__(self, x):
x = self.conv(x)
x = self.bn(x)
return x
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
class ConvBNLayerNew(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayerNew, self).__init__()
self.pool = nn.AvgPool2d(
kernel_size=2, stride=2, padding=0, ceil_mode=True)
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=(filter_size - 1) // 2,
padding=(kernel_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
def __call__(self, x):
x = self.pool(x)
x = self.conv(x)
x = self.bn(x)
return x
class ShortCut(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
super(ShortCut, self).__init__()
self.use_conv = True
if in_channels != out_channels or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
self.conv = ConvBNLayer(
in_channels, out_channels, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
self.conv = ConvBNLayerNew(
in_channels, out_channels, 1, stride, name=name)
elif if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
self.conv = ConvBNLayer(
in_channels, out_channels, 1, stride, name=name)
else:
return input
self.use_conv = False
def bottleneck_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
def forward(self, x):
if self.use_conv:
x = self.conv(x)
return x
class BottleneckBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, if_first):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels * 4,
stride=stride,
if_first=if_first,
name=name + "_branch1")
self.out_channels = out_channels * 4
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = self.conv2(y)
y = y + self.short(x)
y = F.relu(y)
return y
def basic_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
class BasicBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, if_first):
super(BasicBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input,
num_filters,
stride,
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
self.out_channels = out_channels
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = y + self.short(x)
return F.relu(y)
if __name__ == '__main__':
import paddle
paddle.disable_static()
x = paddle.zeros([1, 3, 640, 640])
x = paddle.to_variable(x)
print(x.shape)
net = ResNet(layers=18)
y = net(x)
for stage in y:
print(stage.shape)
# paddle.save(net.state_dict(),'1.pth')

View File

@ -1,274 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = ["ResNet"]
class ResNet(object):
def __init__(self, params):
"""
the Resnet backbone network for detection module.
Args:
params(dict): the super parameters for network build
"""
self.layers = params['layers']
supported_layers = [18, 34, 50, 101, 152]
assert self.layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, self.layers)
self.is_3x3 = True
def __call__(self, input):
layers = self.layers
is_3x3 = self.is_3x3
# if layers == 18:
# depth = [2, 2, 2, 2]
# elif layers == 34 or layers == 50:
# depth = [3, 4, 6, 3]
# elif layers == 101:
# depth = [3, 4, 23, 3]
# elif layers == 152:
# depth = [3, 8, 36, 3]
# elif layers == 200:
# depth = [3, 12, 48, 3]
# num_filters = [64, 128, 256, 512]
# outs = []
if layers == 18:
depth = [2, 2, 2, 2]#, 3, 3]
elif layers == 34 or layers == 50:
#depth = [3, 4, 6, 3]#, 3, 3]
depth = [3, 4, 6, 3, 3]#, 3]
elif layers == 101:
depth = [3, 4, 23, 3]#, 3, 3]
elif layers == 152:
depth = [3, 8, 36, 3]#, 3, 3]
num_filters = [64, 128, 256, 512, 512]#, 512]
blocks = {}
idx = 'block_0'
blocks[idx] = input
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu')
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=2,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
idx = 'block_1'
blocks[idx] = conv
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
# outs.append(conv)
idx = 'block_' + str(block + 2)
blocks[idx] = conv
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
if_first=block == i == 0,
name=conv_name)
# outs.append(conv)
idx = 'block_' + str(block + 2)
blocks[idx] = conv
# return outs
return blocks
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
stride=1,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
elif if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def basic_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input,
num_filters,
stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

275
ppocr/modeling/backbones/rec_mobilenet_v3.py Executable file → Normal file
View File

@ -1,53 +1,49 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from ppocr.modeling.backbones.det_mobilenet_v3 import ResidualUnit, ConvBNLayer, make_divisible
__all__ = [
'MobileNetV3', 'MobileNetV3_small_x0_35', 'MobileNetV3_small_x0_5',
'MobileNetV3_small_x0_75', 'MobileNetV3_small_x1_0',
'MobileNetV3_small_x1_25', 'MobileNetV3_large_x0_35',
'MobileNetV3_large_x0_5', 'MobileNetV3_large_x0_75',
'MobileNetV3_large_x1_0', 'MobileNetV3_large_x1_25'
]
__all__ = ['MobileNetV3']
class MobileNetV3():
def __init__(self, params):
self.scale = params.get("scale", 0.5)
model_name = params.get("model_name", "small")
large_stride = params.get("large_stride", [1, 2, 2, 2])
small_stride = params.get("small_stride", [2, 2, 2, 2])
class MobileNetV3(nn.Layer):
def __init__(self,
in_channels=3,
model_name='small',
scale=0.5,
large_stride=None,
small_stride=None,
**kwargs):
super(MobileNetV3, self).__init__()
if small_stride is None:
small_stride = [2, 2, 2, 2]
if large_stride is None:
large_stride = [1, 2, 2, 2]
assert isinstance(large_stride, list), "large_stride type must " \
"be list but got {}".format(type(large_stride))
"be list but got {}".format(type(large_stride))
assert isinstance(small_stride, list), "small_stride type must " \
"be list but got {}".format(type(small_stride))
"be list but got {}".format(type(small_stride))
assert len(large_stride) == 4, "large_stride length must be " \
"4 but got {}".format(len(large_stride))
"4 but got {}".format(len(large_stride))
assert len(small_stride) == 4, "small_stride length must be " \
"4 but got {}".format(len(small_stride))
"4 but got {}".format(len(small_stride))
self.inplanes = 16
if model_name == "large":
self.cfg = [
cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', large_stride[0]],
[3, 64, 24, False, 'relu', (large_stride[1], 1)],
@ -65,10 +61,9 @@ class MobileNetV3():
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
cls_ch_squeeze = 960
elif model_name == "small":
self.cfg = [
cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', (small_stride[0], 1)],
[3, 72, 24, False, 'relu', (small_stride[1], 1)],
@ -82,186 +77,72 @@ class MobileNetV3():
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
cls_ch_squeeze = 576
else:
raise NotImplementedError("mode[" + model_name +
"_model] is not implemented!")
supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
assert self.scale in supported_scale, \
"supported scales are {} but input scale is {}".format(supported_scale, self.scale)
assert scale in supported_scale, \
"supported scales are {} but input scale is {}".format(supported_scale, scale)
def __call__(self, input):
scale = self.scale
inplanes = self.inplanes
cfg = self.cfg
cls_ch_squeeze = self.cls_ch_squeeze
cls_ch_expand = self.cls_ch_expand
#conv1
conv = self.conv_bn_layer(
input,
filter_size=3,
num_filters=self.make_divisible(inplanes * scale),
inplanes = 16
# conv1
self.conv1 = ConvBNLayer(
in_channels=in_channels,
out_channels=make_divisible(inplanes * scale),
kernel_size=3,
stride=2,
padding=1,
num_groups=1,
groups=1,
if_act=True,
act='hard_swish',
name='conv1')
i = 0
inplanes = self.make_divisible(inplanes * scale)
for layer_cfg in cfg:
conv = self.residual_unit(
input=conv,
num_in_filter=inplanes,
num_mid_filter=self.make_divisible(scale * layer_cfg[1]),
num_out_filter=self.make_divisible(scale * layer_cfg[2]),
act=layer_cfg[4],
stride=layer_cfg[5],
filter_size=layer_cfg[0],
use_se=layer_cfg[3],
name='conv' + str(i + 2))
inplanes = self.make_divisible(scale * layer_cfg[2])
block_list = []
inplanes = make_divisible(inplanes * scale)
for (k, exp, c, se, nl, s) in cfg:
block_list.append(
ResidualUnit(
in_channels=inplanes,
mid_channels=make_divisible(scale * exp),
out_channels=make_divisible(scale * c),
kernel_size=k,
stride=s,
use_se=se,
act=nl,
name='conv' + str(i + 2)))
inplanes = make_divisible(scale * c)
i += 1
self.blocks = nn.Sequential(*block_list)
conv = self.conv_bn_layer(
input=conv,
filter_size=1,
num_filters=self.make_divisible(scale * cls_ch_squeeze),
self.conv2 = ConvBNLayer(
in_channels=inplanes,
out_channels=make_divisible(scale * cls_ch_squeeze),
kernel_size=1,
stride=1,
padding=0,
num_groups=1,
groups=1,
if_act=True,
act='hard_swish',
name='conv_last')
conv = fluid.layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max')
return conv
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.out_channels = make_divisible(scale * cls_ch_squeeze)
def conv_bn_layer(self,
input,
filter_size,
num_filters,
stride,
padding,
num_groups=1,
if_act=True,
act=None,
name=None,
use_cudnn=True,
res_last_bn_init=False):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=ParamAttr(name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=ParamAttr(
name=bn_name + "_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=bn_name + "_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
if act == 'relu':
bn = fluid.layers.relu(bn)
elif act == 'hard_swish':
bn = fluid.layers.hard_swish(bn)
return bn
def forward(self, x):
x = self.conv1(x)
x = self.blocks(x)
x = self.conv2(x)
x = self.pool(x)
return x
def make_divisible(self, v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
def se_block(self, input, num_out_filter, ratio=4, name=None):
num_mid_filter = num_out_filter // ratio
pool = fluid.layers.pool2d(
input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
conv1 = fluid.layers.conv2d(
input=pool,
filter_size=1,
num_filters=num_mid_filter,
act='relu',
param_attr=ParamAttr(name=name + '_1_weights'),
bias_attr=ParamAttr(name=name + '_1_offset'))
conv2 = fluid.layers.conv2d(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
act='hard_sigmoid',
param_attr=ParamAttr(name=name + '_2_weights'),
bias_attr=ParamAttr(name=name + '_2_offset'))
scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
return scale
def residual_unit(self,
input,
num_in_filter,
num_mid_filter,
num_out_filter,
stride,
filter_size,
act=None,
use_se=False,
name=None):
conv0 = self.conv_bn_layer(
input=input,
filter_size=1,
num_filters=num_mid_filter,
stride=1,
padding=0,
if_act=True,
act=act,
name=name + '_expand')
conv1 = self.conv_bn_layer(
input=conv0,
filter_size=filter_size,
num_filters=num_mid_filter,
stride=stride,
padding=int((filter_size - 1) // 2),
if_act=True,
act=act,
num_groups=num_mid_filter,
use_cudnn=False,
name=name + '_depthwise')
if use_se:
conv1 = self.se_block(
input=conv1, num_out_filter=num_mid_filter, name=name + '_se')
conv2 = self.conv_bn_layer(
input=conv1,
filter_size=1,
num_filters=num_out_filter,
stride=1,
padding=0,
if_act=False,
name=name + '_linear',
res_last_bn_init=True)
if num_in_filter != num_out_filter or stride != 1:
return conv2
else:
return fluid.layers.elementwise_add(x=input, y=conv2, act=None)
if __name__ == '__main__':
import paddle
paddle.disable_static()
x = paddle.zeros((1, 3, 32, 320))
x = paddle.to_variable(x)
net = MobileNetV3(model_name='small', small_stride=[1, 2, 2, 2])
y = net(x)
print(y.shape)

View File

@ -1,246 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"
]
Trainable = True
w_nolr = fluid.ParamAttr(trainable=Trainable)
train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
"epochs": [30, 60, 90],
"steps": [0.1, 0.01, 0.001, 0.0001]
}
}
class ResNet():
def __init__(self, params):
self.layers = params['layers']
self.params = train_parameters
def __call__(self, input):
layers = self.layers
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, layers)
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
stride_list = [(2, 2), (2, 2), (1, 1), (1, 1)]
num_filters = [64, 128, 256, 512]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name="conv1")
F = []
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152] and block == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=stride_list[block] if i == 0 else 1,
name=conv_name)
F.append(conv)
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=stride,
if_first=block == i == 0,
name=conv_name)
F.append(conv)
base = F[-1]
for i in [-2, -3]:
b, c, w, h = F[i].shape
if (w, h) == base.shape[2:]:
base = base
else:
base = fluid.layers.conv2d_transpose(
input=base,
num_filters=c,
filter_size=4,
stride=2,
padding=1,
act=None,
param_attr=w_nolr,
bias_attr=w_nolr)
base = fluid.layers.batch_norm(
base, act="relu", param_attr=w_nolr, bias_attr=w_nolr)
base = fluid.layers.concat([base, F[i]], axis=1)
base = fluid.layers.conv2d(
base,
num_filters=c,
filter_size=1,
param_attr=w_nolr,
bias_attr=w_nolr)
base = fluid.layers.conv2d(
base,
num_filters=c,
filter_size=3,
padding=1,
param_attr=w_nolr,
bias_attr=w_nolr)
base = fluid.layers.batch_norm(
base, act="relu", param_attr=w_nolr, bias_attr=w_nolr)
base = fluid.layers.conv2d(
base,
num_filters=512,
filter_size=1,
bias_attr=w_nolr,
param_attr=w_nolr)
return base
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=2 if stride == (1, 1) else filter_size,
dilation=2 if stride == (1, 1) else 1,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
name=name + "_weights", trainable=Trainable),
bias_attr=False,
name=name + '.conv2d.output.1')
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output.1',
param_attr=ParamAttr(
name=bn_name + '_scale', trainable=Trainable),
bias_attr=ParamAttr(
bn_name + '_offset', trainable=Trainable),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance', )
def shortcut(self, input, ch_out, stride, is_first, name):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1 or is_first == True:
if stride == (1, 1):
return self.conv_bn_layer(input, ch_out, 1, 1, name=name)
else: #stride == (2,2)
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
else:
return input
def bottleneck_block(self, input, num_filters, stride, name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
is_first=False,
name=name + "_branch1")
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
def basic_block(self, input, num_filters, stride, is_first, name):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input, num_filters, stride, is_first, name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')

447
ppocr/modeling/backbones/rec_resnet_vd.py Executable file → Normal file
View File

@ -1,271 +1,312 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
__all__ = [
"ResNet", "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd",
"ResNet152_vd", "ResNet200_vd"
]
__all__ = ["ResNet"]
class ResNet():
def __init__(self, params):
self.layers = params['layers']
self.is_3x3 = True
supported_layers = [18, 34, 50, 101, 152, 200]
assert self.layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers, self.layers)
class ResNet(nn.Layer):
def __init__(self, in_channels=3, layers=34):
super(ResNet, self).__init__()
supported_layers = {
18: {
'depth': [2, 2, 2, 2],
'block_class': BasicBlock
},
34: {
'depth': [3, 4, 6, 3],
'block_class': BasicBlock
},
50: {
'depth': [3, 4, 6, 3],
'block_class': BottleneckBlock
},
101: {
'depth': [3, 4, 23, 3],
'block_class': BottleneckBlock
},
152: {
'depth': [3, 8, 36, 3],
'block_class': BottleneckBlock
},
200: {
'depth': [3, 12, 48, 3],
'block_class': BottleneckBlock
}
}
assert layers in supported_layers, \
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
is_3x3 = True
def __call__(self, input):
is_3x3 = self.is_3x3
layers = self.layers
if layers == 18:
depth = [2, 2, 2, 2]
elif layers == 34 or layers == 50:
depth = [3, 4, 6, 3]
elif layers == 101:
depth = [3, 4, 23, 3]
elif layers == 152:
depth = [3, 8, 36, 3]
elif layers == 200:
depth = [3, 12, 48, 3]
num_filters = [64, 128, 256, 512]
depth = supported_layers[layers]['depth']
block_class = supported_layers[layers]['block_class']
conv = []
if is_3x3 == False:
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=1,
act='relu')
conv.append(
ConvBNLayer(
in_channels=in_channels,
out_channels=64,
kernel_size=7,
stride=1,
act='relu'))
else:
conv = self.conv_bn_layer(
input=input,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_1')
conv = self.conv_bn_layer(
input=conv,
num_filters=32,
filter_size=3,
stride=1,
act='relu',
name='conv1_2')
conv = self.conv_bn_layer(
input=conv,
num_filters=64,
filter_size=3,
stride=1,
act='relu',
name='conv1_3')
conv.append(
ConvBNLayer(
in_channels=in_channels,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name='conv1_1'))
conv.append(
ConvBNLayer(
in_channels=32,
out_channels=32,
kernel_size=3,
stride=1,
act='relu',
name='conv1_2'))
conv.append(
ConvBNLayer(
in_channels=32,
out_channels=64,
kernel_size=3,
stride=1,
act='relu',
name='conv1_3'))
self.conv1 = nn.Sequential(*conv)
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
self.pool = nn.MaxPool2d(
kernel_size=3,
stride=2,
padding=1, )
if layers >= 50:
for block in range(len(depth)):
for i in range(depth[block]):
if layers in [101, 152, 200] and block == 2:
block_list = []
in_ch = 64
for block_index in range(len(depth)):
for i in range(depth[block_index]):
if layers >= 50:
if layers in [101, 152, 200] and block_index == 2:
if i == 0:
conv_name = "res" + str(block + 2) + "a"
conv_name = "res" + str(block_index + 2) + "a"
else:
conv_name = "res" + str(block + 2) + "b" + str(i)
conv_name = "res" + str(block_index +
2) + "b" + str(i)
else:
conv_name = "res" + str(block + 2) + chr(97 + i)
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
conv_name = "res" + str(block_index + 2) + chr(97 + i)
else:
conv_name = "res" + str(block_index + 2) + chr(97 + i)
if i == 0 and block_index != 0:
stride = (2, 1)
else:
stride = (1, 1)
block_list.append(
block_class(
in_channels=in_ch,
out_channels=num_filters[block_index],
stride=stride,
if_first=block == i == 0,
name=conv_name)
else:
for block in range(len(depth)):
for i in range(depth[block]):
conv_name = "res" + str(block + 2) + chr(97 + i)
if_first=block_index == i == 0,
name=conv_name))
in_ch = block_list[-1].out_channels
self.block_list = nn.Sequential(*block_list)
self.add_sublayer(sublayer=self.block_list, name="block_list")
self.pool_out = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.out_channels = in_ch
if i == 0 and block != 0:
stride = (2, 1)
else:
stride = (1, 1)
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
x = self.block_list(x)
x = self.pool_out(x)
return x
conv = self.basic_block(
input=conv,
num_filters=num_filters[block],
stride=stride,
if_first=block == i == 0,
name=conv_name)
conv = fluid.layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max')
return conv
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
class ConvBNLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayer, self).__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=(filter_size - 1) // 2,
padding=(kernel_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def conv_bn_layer_new(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
pool = fluid.layers.pool2d(
input=input,
pool_size=stride,
pool_stride=stride,
pool_padding=0,
pool_type='avg',
ceil_mode=True)
def __call__(self, x):
x = self.conv(x)
x = self.bn(x)
return x
conv = fluid.layers.conv2d(
input=pool,
num_filters=num_filters,
filter_size=filter_size,
class ConvBNLayerNew(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
groups=1,
act=None,
name=None):
super(ConvBNLayerNew, self).__init__()
self.pool = nn.AvgPool2d(
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=1,
padding=(filter_size - 1) // 2,
padding=(kernel_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
weight_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
if name == "conv1":
bn_name = "bn_" + name
else:
bn_name = "bn" + name[3:]
return fluid.layers.batch_norm(
input=conv,
self.bn = nn.BatchNorm(
num_channels=out_channels,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
param_attr=ParamAttr(name=bn_name + "_scale"),
bias_attr=ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + "_mean",
moving_variance_name=bn_name + "_variance")
def shortcut(self, input, ch_out, stride, name, if_first=False):
ch_in = input.shape[1]
if ch_in != ch_out or stride[0] != 1:
def __call__(self, x):
x = self.pool(x)
x = self.conv(x)
x = self.bn(x)
return x
class ShortCut(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
super(ShortCut, self).__init__()
self.use_conv = True
if in_channels != out_channels or stride[0] != 1:
if if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
self.conv = ConvBNLayer(
in_channels, out_channels, 1, stride, name=name)
else:
return self.conv_bn_layer_new(
input, ch_out, 1, stride, name=name)
self.conv = ConvBNLayerNew(
in_channels, out_channels, 1, stride, name=name)
elif if_first:
return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
self.conv = ConvBNLayer(
in_channels, out_channels, 1, stride, name=name)
else:
return input
self.use_conv = False
def bottleneck_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=1,
def forward(self, x):
if self.use_conv:
x = self.conv(x)
return x
class BottleneckBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, if_first):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
act='relu',
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
act='relu',
name=name + "_branch2b")
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
self.conv2 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels * 4,
kernel_size=1,
act=None,
name=name + "_branch2c")
short = self.shortcut(
input,
num_filters * 4,
stride,
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels * 4,
stride=stride,
if_first=if_first,
name=name + "_branch1")
self.out_channels = out_channels * 4
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = self.conv2(y)
y = y + self.short(x)
y = F.relu(y)
return y
def basic_block(self, input, num_filters, stride, name, if_first):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
filter_size=3,
class BasicBlock(nn.Layer):
def __init__(self, in_channels, out_channels, stride, name, if_first):
super(BasicBlock, self).__init__()
self.conv0 = ConvBNLayer(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
act='relu',
stride=stride,
name=name + "_branch2a")
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
self.conv1 = ConvBNLayer(
in_channels=out_channels,
out_channels=out_channels,
kernel_size=3,
act=None,
name=name + "_branch2b")
short = self.shortcut(
input,
num_filters,
stride,
self.short = ShortCut(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
if_first=if_first,
name=name + "_branch1")
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
self.out_channels = out_channels
def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
y = y + self.short(x)
return F.relu(y)

View File

@ -1,95 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import math
def get_para_bias_attr(l2_decay, k, name):
regularizer = fluid.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = fluid.initializer.Uniform(-stdv, stdv)
para_attr = fluid.ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
bias_attr = fluid.ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
return [para_attr, bias_attr]
def conv_bn_layer(input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d')
bn_name = "bn_" + name
return fluid.layers.batch_norm(
input=conv,
act=act,
name=bn_name + '.output',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def deconv_bn_layer(input,
num_filters,
filter_size=4,
stride=2,
act='relu',
name=None):
deconv = fluid.layers.conv2d_transpose(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=1,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.deconv2d')
bn_name = "bn_" + name
return fluid.layers.batch_norm(
input=deconv,
act=act,
name=bn_name + '.output',
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def create_tmp_var(program, name, dtype, shape, lod_level=0):
return program.current_block().create_var(
name=name, dtype=dtype, shape=shape, lod_level=lod_level)

View File

@ -11,3 +11,20 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['build_head']
def build_head(config):
# det head
from .det_db_head import DBHead
# rec head
from .rec_ctc_head import CTC
support_dict = ['DBHead', 'CTC']
module_name = config.pop('name')
assert module_name in support_dict, Exception('head only support {}'.format(
support_dict))
module_class = eval(module_name)(**config)
return module_class

View File

@ -1,27 +1,98 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class DBHead(object):
def get_bias_attr(k, name):
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = paddle.nn.initializer.Uniform(-stdv, stdv)
bias_attr = ParamAttr(initializer=initializer, name=name + "_b_attr")
return bias_attr
class Head(nn.Layer):
def __init__(self, in_channels, name_list):
super(Head, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=in_channels,
out_channels=in_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(name=name_list[0] + '.w_0'),
bias_attr=False)
self.conv_bn1 = nn.BatchNorm(
num_channels=in_channels // 4,
param_attr=ParamAttr(
name=name_list[1] + '.w_0',
initializer=paddle.nn.initializer.Constant(value=1.0)),
bias_attr=ParamAttr(
name=name_list[1] + '.b_0',
initializer=paddle.nn.initializer.Constant(value=1e-4)),
moving_mean_name=name_list[1] + '.w_1',
moving_variance_name=name_list[1] + '.w_2',
act='relu')
self.conv2 = nn.ConvTranspose2d(
in_channels=in_channels // 4,
out_channels=in_channels // 4,
kernel_size=2,
stride=2,
weight_attr=ParamAttr(
name=name_list[2] + '.w_0',
initializer=paddle.nn.initializer.MSRA(uniform=False)),
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv2"))
self.conv_bn2 = nn.BatchNorm(
num_channels=in_channels // 4,
param_attr=ParamAttr(
name=name_list[3] + '.w_0',
initializer=paddle.nn.initializer.Constant(value=1.0)),
bias_attr=ParamAttr(
name=name_list[3] + '.b_0',
initializer=paddle.nn.initializer.Constant(value=1e-4)),
moving_mean_name=name_list[3] + '.w_1',
moving_variance_name=name_list[3] + '.w_2',
act="relu")
self.conv3 = nn.ConvTranspose2d(
in_channels=in_channels // 4,
out_channels=1,
kernel_size=2,
stride=2,
weight_attr=ParamAttr(
name=name_list[4] + '.w_0',
initializer=paddle.nn.initializer.MSRA(uniform=False)),
bias_attr=get_bias_attr(in_channels // 4, name_list[-1] + "conv3"),
)
def forward(self, x):
x = self.conv1(x)
x = self.conv_bn1(x)
x = self.conv2(x)
x = self.conv_bn2(x)
x = self.conv3(x)
x = F.sigmoid(x)
return x
class DBHead(nn.Layer):
"""
Differentiable Binarization (DB) for text detection:
see https://arxiv.org/abs/1911.08947
@ -29,177 +100,29 @@ class DBHead(object):
params(dict): super parameters for build DB network
"""
def __init__(self, params):
self.k = params['k']
self.inner_channels = params['inner_channels']
self.C, self.H, self.W = params['image_shape']
print(self.C, self.H, self.W)
def binarize(self, x):
conv1 = fluid.layers.conv2d(
input=x,
num_filters=self.inner_channels // 4,
filter_size=3,
padding=1,
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
bias_attr=False)
conv_bn1 = fluid.layers.batch_norm(
input=conv1,
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
act="relu")
conv2 = fluid.layers.conv2d_transpose(
input=conv_bn1,
num_filters=self.inner_channels // 4,
filter_size=2,
stride=2,
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
bias_attr=self._get_bias_attr(0.0004, conv_bn1.shape[1], "conv2"),
act=None)
conv_bn2 = fluid.layers.batch_norm(
input=conv2,
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
act="relu")
conv3 = fluid.layers.conv2d_transpose(
input=conv_bn2,
num_filters=1,
filter_size=2,
stride=2,
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
bias_attr=self._get_bias_attr(0.0004, conv_bn2.shape[1], "conv3"),
act=None)
out = fluid.layers.sigmoid(conv3)
return out
def thresh(self, x):
conv1 = fluid.layers.conv2d(
input=x,
num_filters=self.inner_channels // 4,
filter_size=3,
padding=1,
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
bias_attr=False)
conv_bn1 = fluid.layers.batch_norm(
input=conv1,
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
act="relu")
conv2 = fluid.layers.conv2d_transpose(
input=conv_bn1,
num_filters=self.inner_channels // 4,
filter_size=2,
stride=2,
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
bias_attr=self._get_bias_attr(0.0004, conv_bn1.shape[1], "conv2"),
act=None)
conv_bn2 = fluid.layers.batch_norm(
input=conv2,
param_attr=fluid.initializer.ConstantInitializer(value=1.0),
bias_attr=fluid.initializer.ConstantInitializer(value=1e-4),
act="relu")
conv3 = fluid.layers.conv2d_transpose(
input=conv_bn2,
num_filters=1,
filter_size=2,
stride=2,
param_attr=fluid.initializer.MSRAInitializer(uniform=False),
bias_attr=self._get_bias_attr(0.0004, conv_bn2.shape[1], "conv3"),
act=None)
out = fluid.layers.sigmoid(conv3)
return out
def _get_bias_attr(self, l2_decay, k, name, gradient_clip=None):
regularizer = fluid.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = fluid.initializer.Uniform(-stdv, stdv)
bias_attr = fluid.ParamAttr(
regularizer=regularizer,
initializer=initializer,
name=name + "_b_attr")
return bias_attr
def __init__(self, in_channels, k=50, **kwargs):
super(DBHead, self).__init__()
self.k = k
binarize_name_list = [
'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48',
'conv2d_transpose_1', 'binarize'
]
thresh_name_list = [
'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50',
'conv2d_transpose_3', 'thresh'
]
self.binarize = Head(in_channels, binarize_name_list)
self.thresh = Head(in_channels, thresh_name_list)
def step_function(self, x, y):
return fluid.layers.reciprocal(1 + fluid.layers.exp(-self.k * (x - y)))
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
def __call__(self, conv_features, mode="train"):
c2, c3, c4, c5 = conv_features
param_attr = fluid.initializer.MSRAInitializer(uniform=False)
in5 = fluid.layers.conv2d(
input=c5,
num_filters=self.inner_channels,
filter_size=1,
param_attr=param_attr,
bias_attr=False)
in4 = fluid.layers.conv2d(
input=c4,
num_filters=self.inner_channels,
filter_size=1,
param_attr=param_attr,
bias_attr=False)
in3 = fluid.layers.conv2d(
input=c3,
num_filters=self.inner_channels,
filter_size=1,
param_attr=param_attr,
bias_attr=False)
in2 = fluid.layers.conv2d(
input=c2,
num_filters=self.inner_channels,
filter_size=1,
param_attr=param_attr,
bias_attr=False)
def forward(self, x):
shrink_maps = self.binarize(x)
if not self.training:
return shrink_maps
out4 = fluid.layers.elementwise_add(
x=fluid.layers.resize_nearest(
input=in5, scale=2), y=in4) # 1/16
out3 = fluid.layers.elementwise_add(
x=fluid.layers.resize_nearest(
input=out4, scale=2), y=in3) # 1/8
out2 = fluid.layers.elementwise_add(
x=fluid.layers.resize_nearest(
input=out3, scale=2), y=in2) # 1/4
p5 = fluid.layers.conv2d(
input=in5,
num_filters=self.inner_channels // 4,
filter_size=3,
padding=1,
param_attr=param_attr,
bias_attr=False)
p5 = fluid.layers.resize_nearest(input=p5, scale=8)
p4 = fluid.layers.conv2d(
input=out4,
num_filters=self.inner_channels // 4,
filter_size=3,
padding=1,
param_attr=param_attr,
bias_attr=False)
p4 = fluid.layers.resize_nearest(input=p4, scale=4)
p3 = fluid.layers.conv2d(
input=out3,
num_filters=self.inner_channels // 4,
filter_size=3,
padding=1,
param_attr=param_attr,
bias_attr=False)
p3 = fluid.layers.resize_nearest(input=p3, scale=2)
p2 = fluid.layers.conv2d(
input=out2,
num_filters=self.inner_channels // 4,
filter_size=3,
padding=1,
param_attr=param_attr,
bias_attr=False)
fuse = fluid.layers.concat(input=[p5, p4, p3, p2], axis=1)
shrink_maps = self.binarize(fuse)
if mode != "train":
return {"maps": shrink_maps}
threshold_maps = self.thresh(fuse)
threshold_maps = self.thresh(x)
binary_maps = self.step_function(shrink_maps, threshold_maps)
y = fluid.layers.concat(
input=[shrink_maps, threshold_maps, binary_maps], axis=1)
predicts = {}
predicts['maps'] = y
return predicts
y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1)
return y

View File

@ -1,117 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict
class EASTHead(object):
"""
EAST: An Efficient and Accurate Scene Text Detector
see arxiv: https://arxiv.org/abs/1704.03155
args:
params(dict): the super parameters for network build
"""
def __init__(self, params):
self.model_name = params['model_name']
def unet_fusion(self, inputs):
f = inputs[::-1]
if self.model_name == "large":
num_outputs = [128, 128, 128, 128]
else:
num_outputs = [64, 64, 64, 64]
g = [None, None, None, None]
h = [None, None, None, None]
for i in range(4):
if i == 0:
h[i] = f[i]
else:
h[i] = fluid.layers.concat([g[i - 1], f[i]], axis=1)
h[i] = conv_bn_layer(
input=h[i],
num_filters=num_outputs[i],
filter_size=3,
stride=1,
act='relu',
name="unet_h_%d" % (i))
if i <= 2:
#can be replaced with unpool
g[i] = deconv_bn_layer(
input=h[i],
num_filters=num_outputs[i],
name="unet_g_%d" % (i))
else:
g[i] = conv_bn_layer(
input=h[i],
num_filters=num_outputs[i],
filter_size=3,
stride=1,
act='relu',
name="unet_g_%d" % (i))
return g[3]
def detector_header(self, f_common):
if self.model_name == "large":
num_outputs = [128, 64, 1, 8]
else:
num_outputs = [64, 32, 1, 8]
f_det = conv_bn_layer(
input=f_common,
num_filters=num_outputs[0],
filter_size=3,
stride=1,
act='relu',
name="det_head1")
f_det = conv_bn_layer(
input=f_det,
num_filters=num_outputs[1],
filter_size=3,
stride=1,
act='relu',
name="det_head2")
#f_score
f_score = conv_bn_layer(
input=f_det,
num_filters=num_outputs[2],
filter_size=1,
stride=1,
act=None,
name="f_score")
f_score = fluid.layers.sigmoid(f_score)
#f_geo
f_geo = conv_bn_layer(
input=f_det,
num_filters=num_outputs[3],
filter_size=1,
stride=1,
act=None,
name="f_geo")
f_geo = (fluid.layers.sigmoid(f_geo) - 0.5) * 2 * 800
return f_score, f_geo
def __call__(self, inputs):
f_common = self.unet_fusion(inputs)
f_score, f_geo = self.detector_header(f_common)
predicts = OrderedDict()
predicts['f_score'] = f_score
predicts['f_geo'] = f_geo
return predicts

View File

@ -1,228 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict
class SASTHead(object):
"""
SAST:
see arxiv: https://arxiv.org/abs/1908.05498
args:
params(dict): the super parameters for network build
"""
def __init__(self, params):
self.model_name = params['model_name']
self.with_cab = params['with_cab']
def FPN_Up_Fusion(self, blocks):
"""
blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
"""
f = [blocks['block_6'], blocks['block_5'], blocks['block_4'], blocks['block_3'], blocks['block_2']]
num_outputs = [256, 256, 192, 192, 128]
g = [None, None, None, None, None]
h = [None, None, None, None, None]
for i in range(5):
h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
filter_size=1, stride=1, act=None, name='fpn_up_h'+str(i))
for i in range(4):
if i == 0:
g[i] = deconv_bn_layer(input=h[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g0')
#print("g[{}] shape: {}".format(i, g[i].shape))
else:
g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
g[i] = fluid.layers.relu(g[i])
#g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
# filter_size=1, stride=1, act='relu')
g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
filter_size=3, stride=1, act='relu', name='fpn_up_g%d_1'%i)
g[i] = deconv_bn_layer(input=g[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g%d_2'%i)
#print("g[{}] shape: {}".format(i, g[i].shape))
g[4] = fluid.layers.elementwise_add(x=g[3], y=h[4])
g[4] = fluid.layers.relu(g[4])
g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
filter_size=3, stride=1, act='relu', name='fpn_up_fusion_1')
g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
filter_size=1, stride=1, act=None, name='fpn_up_fusion_2')
return g[4]
def FPN_Down_Fusion(self, blocks):
"""
blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
"""
f = [blocks['block_0'], blocks['block_1'], blocks['block_2']]
num_outputs = [32, 64, 128]
g = [None, None, None]
h = [None, None, None]
for i in range(3):
h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
filter_size=3, stride=1, act=None, name='fpn_down_h'+str(i))
for i in range(2):
if i == 0:
g[i] = conv_bn_layer(input=h[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g0')
else:
g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
g[i] = fluid.layers.relu(g[i])
g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i], filter_size=3, stride=1, act='relu', name='fpn_down_g%d_1'%i)
g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g%d_2'%i)
# print("g[{}] shape: {}".format(i, g[i].shape))
g[2] = fluid.layers.elementwise_add(x=g[1], y=h[2])
g[2] = fluid.layers.relu(g[2])
g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
filter_size=3, stride=1, act='relu', name='fpn_down_fusion_1')
g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
filter_size=1, stride=1, act=None, name='fpn_down_fusion_2')
return g[2]
def SAST_Header1(self, f_common):
"""Detector header."""
#f_score
f_score = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_score1')
f_score = conv_bn_layer(input=f_score, num_filters=64, filter_size=3, stride=1, act='relu', name='f_score2')
f_score = conv_bn_layer(input=f_score, num_filters=128, filter_size=1, stride=1, act='relu', name='f_score3')
f_score = conv_bn_layer(input=f_score, num_filters=1, filter_size=3, stride=1, name='f_score4')
f_score = fluid.layers.sigmoid(f_score)
# print("f_score shape: {}".format(f_score.shape))
#f_boder
f_border = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_border1')
f_border = conv_bn_layer(input=f_border, num_filters=64, filter_size=3, stride=1, act='relu', name='f_border2')
f_border = conv_bn_layer(input=f_border, num_filters=128, filter_size=1, stride=1, act='relu', name='f_border3')
f_border = conv_bn_layer(input=f_border, num_filters=4, filter_size=3, stride=1, name='f_border4')
# print("f_border shape: {}".format(f_border.shape))
return f_score, f_border
def SAST_Header2(self, f_common):
"""Detector header."""
#f_tvo
f_tvo = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tvo1')
f_tvo = conv_bn_layer(input=f_tvo, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tvo2')
f_tvo = conv_bn_layer(input=f_tvo, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tvo3')
f_tvo = conv_bn_layer(input=f_tvo, num_filters=8, filter_size=3, stride=1, name='f_tvo4')
# print("f_tvo shape: {}".format(f_tvo.shape))
#f_tco
f_tco = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tco1')
f_tco = conv_bn_layer(input=f_tco, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tco2')
f_tco = conv_bn_layer(input=f_tco, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tco3')
f_tco = conv_bn_layer(input=f_tco, num_filters=2, filter_size=3, stride=1, name='f_tco4')
# print("f_tco shape: {}".format(f_tco.shape))
return f_tvo, f_tco
def cross_attention(self, f_common):
"""
"""
f_shape = fluid.layers.shape(f_common)
f_theta = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_theta')
f_phi = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_phi')
f_g = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_g')
### horizon
fh_theta = f_theta
fh_phi = f_phi
fh_g = f_g
#flatten
fh_theta = fluid.layers.transpose(fh_theta, [0, 2, 3, 1])
fh_theta = fluid.layers.reshape(fh_theta, [f_shape[0] * f_shape[2], f_shape[3], 128])
fh_phi = fluid.layers.transpose(fh_phi, [0, 2, 3, 1])
fh_phi = fluid.layers.reshape(fh_phi, [f_shape[0] * f_shape[2], f_shape[3], 128])
fh_g = fluid.layers.transpose(fh_g, [0, 2, 3, 1])
fh_g = fluid.layers.reshape(fh_g, [f_shape[0] * f_shape[2], f_shape[3], 128])
#correlation
fh_attn = fluid.layers.matmul(fh_theta, fluid.layers.transpose(fh_phi, [0, 2, 1]))
#scale
fh_attn = fh_attn / (128 ** 0.5)
fh_attn = fluid.layers.softmax(fh_attn)
#weighted sum
fh_weight = fluid.layers.matmul(fh_attn, fh_g)
fh_weight = fluid.layers.reshape(fh_weight, [f_shape[0], f_shape[2], f_shape[3], 128])
# print("fh_weight: {}".format(fh_weight.shape))
fh_weight = fluid.layers.transpose(fh_weight, [0, 3, 1, 2])
fh_weight = conv_bn_layer(input=fh_weight, num_filters=128, filter_size=1, stride=1, name='fh_weight')
#short cut
fh_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fh_sc')
f_h = fluid.layers.relu(fh_weight + fh_sc)
######
#vertical
fv_theta = fluid.layers.transpose(f_theta, [0, 1, 3, 2])
fv_phi = fluid.layers.transpose(f_phi, [0, 1, 3, 2])
fv_g = fluid.layers.transpose(f_g, [0, 1, 3, 2])
#flatten
fv_theta = fluid.layers.transpose(fv_theta, [0, 2, 3, 1])
fv_theta = fluid.layers.reshape(fv_theta, [f_shape[0] * f_shape[3], f_shape[2], 128])
fv_phi = fluid.layers.transpose(fv_phi, [0, 2, 3, 1])
fv_phi = fluid.layers.reshape(fv_phi, [f_shape[0] * f_shape[3], f_shape[2], 128])
fv_g = fluid.layers.transpose(fv_g, [0, 2, 3, 1])
fv_g = fluid.layers.reshape(fv_g, [f_shape[0] * f_shape[3], f_shape[2], 128])
#correlation
fv_attn = fluid.layers.matmul(fv_theta, fluid.layers.transpose(fv_phi, [0, 2, 1]))
#scale
fv_attn = fv_attn / (128 ** 0.5)
fv_attn = fluid.layers.softmax(fv_attn)
#weighted sum
fv_weight = fluid.layers.matmul(fv_attn, fv_g)
fv_weight = fluid.layers.reshape(fv_weight, [f_shape[0], f_shape[3], f_shape[2], 128])
# print("fv_weight: {}".format(fv_weight.shape))
fv_weight = fluid.layers.transpose(fv_weight, [0, 3, 2, 1])
fv_weight = conv_bn_layer(input=fv_weight, num_filters=128, filter_size=1, stride=1, name='fv_weight')
#short cut
fv_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fv_sc')
f_v = fluid.layers.relu(fv_weight + fv_sc)
######
f_attn = fluid.layers.concat([f_h, f_v], axis=1)
f_attn = conv_bn_layer(input=f_attn, num_filters=128, filter_size=1, stride=1, act='relu', name='f_attn')
return f_attn
def __call__(self, blocks, with_cab=False):
# for k, v in blocks.items():
# print(k, v.shape)
#down fpn
f_down = self.FPN_Down_Fusion(blocks)
# print("f_down shape: {}".format(f_down.shape))
#up fpn
f_up = self.FPN_Up_Fusion(blocks)
# print("f_up shape: {}".format(f_up.shape))
#fusion
f_common = fluid.layers.elementwise_add(x=f_down, y=f_up)
f_common = fluid.layers.relu(f_common)
# print("f_common: {}".format(f_common.shape))
if self.with_cab:
# print('enhence f_common with CAB.')
f_common = self.cross_attention(f_common)
f_score, f_border= self.SAST_Header1(f_common)
f_tvo, f_tco = self.SAST_Header2(f_common)
predicts = OrderedDict()
predicts['f_score'] = f_score
predicts['f_border'] = f_border
predicts['f_tvo'] = f_tvo
predicts['f_tco'] = f_tco
return predicts

View File

@ -1,237 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from .rec_seq_encoder import SequenceEncoder
import numpy as np
class AttentionPredict(object):
def __init__(self, params):
super(AttentionPredict, self).__init__()
self.char_num = params['char_num']
self.encoder = SequenceEncoder(params)
self.decoder_size = params['Attention']['decoder_size']
self.word_vector_dim = params['Attention']['word_vector_dim']
self.encoder_type = params['encoder_type']
self.max_length = params['max_text_length']
def simple_attention(self, encoder_vec, encoder_proj, decoder_state,
decoder_size):
decoder_state_proj = layers.fc(input=decoder_state,
size=decoder_size,
bias_attr=False,
name="decoder_state_proj_fc")
decoder_state_expand = layers.sequence_expand(
x=decoder_state_proj, y=encoder_proj)
concated = layers.elementwise_add(encoder_proj, decoder_state_expand)
concated = layers.tanh(x=concated)
attention_weights = layers.fc(input=concated,
size=1,
act=None,
bias_attr=False,
name="attention_weights_fc")
attention_weights = layers.sequence_softmax(input=attention_weights)
weigths_reshape = layers.reshape(x=attention_weights, shape=[-1])
scaled = layers.elementwise_mul(
x=encoder_vec, y=weigths_reshape, axis=0)
context = layers.sequence_pool(input=scaled, pool_type='sum')
return context
def gru_decoder_with_attention(self, target_embedding, encoder_vec,
encoder_proj, decoder_boot, decoder_size,
char_num):
rnn = layers.DynamicRNN()
with rnn.block():
current_word = rnn.step_input(target_embedding)
encoder_vec = rnn.static_input(encoder_vec)
encoder_proj = rnn.static_input(encoder_proj)
hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
context = self.simple_attention(encoder_vec, encoder_proj,
hidden_mem, decoder_size)
fc_1 = layers.fc(input=context,
size=decoder_size * 3,
bias_attr=False,
name="rnn_fc1")
fc_2 = layers.fc(input=current_word,
size=decoder_size * 3,
bias_attr=False,
name="rnn_fc2")
decoder_inputs = fc_1 + fc_2
h, _, _ = layers.gru_unit(
input=decoder_inputs, hidden=hidden_mem, size=decoder_size * 3)
rnn.update_memory(hidden_mem, h)
out = layers.fc(input=h,
size=char_num,
bias_attr=True,
act='softmax',
name="rnn_out_fc")
rnn.output(out)
return rnn()
def gru_attention_infer(self, decoder_boot, max_length, char_num,
word_vector_dim, encoded_vector, encoded_proj,
decoder_size):
init_state = decoder_boot
beam_size = 1
array_len = layers.fill_constant(
shape=[1], dtype='int64', value=max_length)
counter = layers.zeros(shape=[1], dtype='int64', force_cpu=True)
# fill the first element with init_state
state_array = layers.create_array('float32')
layers.array_write(init_state, array=state_array, i=counter)
# ids, scores as memory
ids_array = layers.create_array('int64')
scores_array = layers.create_array('float32')
rois_shape = layers.shape(init_state)
batch_size = layers.slice(
rois_shape, axes=[0], starts=[0], ends=[1]) + 1
lod_level = layers.range(
start=0, end=batch_size, step=1, dtype=batch_size.dtype)
init_ids = layers.fill_constant_batch_size_like(
input=init_state, shape=[-1, 1], value=0, dtype='int64')
init_ids = layers.lod_reset(init_ids, lod_level)
init_ids = layers.lod_append(init_ids, lod_level)
init_scores = layers.fill_constant_batch_size_like(
input=init_state, shape=[-1, 1], value=1, dtype='float32')
init_scores = layers.lod_reset(init_scores, init_ids)
layers.array_write(init_ids, array=ids_array, i=counter)
layers.array_write(init_scores, array=scores_array, i=counter)
full_ids = fluid.layers.fill_constant_batch_size_like(
input=init_state, shape=[-1, 1], dtype='int64', value=1)
full_scores = fluid.layers.fill_constant_batch_size_like(
input=init_state, shape=[-1, 1], dtype='float32', value=1)
cond = layers.less_than(x=counter, y=array_len)
while_op = layers.While(cond=cond)
with while_op.block():
pre_ids = layers.array_read(array=ids_array, i=counter)
pre_state = layers.array_read(array=state_array, i=counter)
pre_score = layers.array_read(array=scores_array, i=counter)
pre_ids_emb = layers.embedding(
input=pre_ids,
size=[char_num, word_vector_dim],
dtype='float32')
context = self.simple_attention(encoded_vector, encoded_proj,
pre_state, decoder_size)
# expand the recursive_sequence_lengths of pre_state
# to be the same with pre_score
pre_state_expanded = layers.sequence_expand(pre_state, pre_score)
context_expanded = layers.sequence_expand(context, pre_score)
fc_1 = layers.fc(input=context_expanded,
size=decoder_size * 3,
bias_attr=False,
name="rnn_fc1")
fc_2 = layers.fc(input=pre_ids_emb,
size=decoder_size * 3,
bias_attr=False,
name="rnn_fc2")
decoder_inputs = fc_1 + fc_2
current_state, _, _ = layers.gru_unit(
input=decoder_inputs,
hidden=pre_state_expanded,
size=decoder_size * 3)
current_state_with_lod = layers.lod_reset(
x=current_state, y=pre_score)
# use score to do beam search
current_score = layers.fc(input=current_state_with_lod,
size=char_num,
bias_attr=True,
act='softmax',
name="rnn_out_fc")
topk_scores, topk_indices = layers.topk(current_score, k=beam_size)
new_ids = fluid.layers.concat([full_ids, topk_indices], axis=1)
fluid.layers.assign(new_ids, full_ids)
new_scores = fluid.layers.concat([full_scores, topk_scores], axis=1)
fluid.layers.assign(new_scores, full_scores)
layers.increment(x=counter, value=1, in_place=True)
# update the memories
layers.array_write(current_state, array=state_array, i=counter)
layers.array_write(topk_indices, array=ids_array, i=counter)
layers.array_write(topk_scores, array=scores_array, i=counter)
# update the break condition:
# up to the max length or all candidates of
# source sentences have ended.
length_cond = layers.less_than(x=counter, y=array_len)
finish_cond = layers.logical_not(layers.is_empty(x=topk_indices))
layers.logical_and(x=length_cond, y=finish_cond, out=cond)
return full_ids, full_scores
def __call__(self, inputs, labels=None, mode=None):
encoder_features = self.encoder(inputs)
char_num = self.char_num
word_vector_dim = self.word_vector_dim
decoder_size = self.decoder_size
if self.encoder_type == "reshape":
encoder_input = encoder_features
encoded_vector = encoder_features
else:
encoder_input = encoder_features[1]
encoded_vector = layers.concat(encoder_features, axis=1)
encoded_proj = layers.fc(input=encoded_vector,
size=decoder_size,
bias_attr=False,
name="encoded_proj_fc")
backward_first = layers.sequence_pool(
input=encoder_input, pool_type='first')
decoder_boot = layers.fc(input=backward_first,
size=decoder_size,
bias_attr=False,
act="relu",
name='decoder_boot')
if mode == "train":
label_in = labels['label_in']
label_out = labels['label_out']
label_in = layers.cast(x=label_in, dtype='int64')
trg_embedding = layers.embedding(
input=label_in,
size=[char_num, word_vector_dim],
dtype='float32')
predict = self.gru_decoder_with_attention(
trg_embedding, encoded_vector, encoded_proj, decoder_boot,
decoder_size, char_num)
_, decoded_out = layers.topk(input=predict, k=1)
decoded_out = layers.lod_reset(decoded_out, y=label_out)
predicts = {'predict':predict, 'decoded_out':decoded_out}
else:
ids, predict = self.gru_attention_infer(
decoder_boot, self.max_length, char_num, word_vector_dim,
encoded_vector, encoded_proj, decoder_size)
predicts = {'predict':predict, 'decoded_out':ids}
return predicts

View File

@ -1,16 +1,16 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
@ -19,34 +19,33 @@ from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from .rec_seq_encoder import SequenceEncoder
from ..common_functions import get_para_bias_attr
import numpy as np
from paddle import ParamAttr, nn
class CTCPredict(object):
def __init__(self, params):
super(CTCPredict, self).__init__()
self.char_num = params['char_num']
self.encoder = SequenceEncoder(params)
self.encoder_type = params['encoder_type']
self.fc_decay = params.get("fc_decay", 0.0004)
def get_para_bias_attr(l2_decay, k, name):
regularizer = paddle.fluid.regularizer.L2Decay(l2_decay)
stdv = 1.0 / math.sqrt(k * 1.0)
initializer = nn.initializer.Uniform(-stdv, stdv)
weight_attr = ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_w_attr")
bias_attr = ParamAttr(
regularizer=regularizer, initializer=initializer, name=name + "_b_attr")
return [weight_attr, bias_attr]
def __call__(self, inputs, labels=None, mode=None):
encoder_features = self.encoder(inputs)
if self.encoder_type != "reshape":
encoder_features = fluid.layers.concat(encoder_features, axis=1)
name = "ctc_fc"
para_attr, bias_attr = get_para_bias_attr(
l2_decay=self.fc_decay, k=encoder_features.shape[1], name=name)
predict = fluid.layers.fc(input=encoder_features,
size=self.char_num + 1,
param_attr=para_attr,
bias_attr=bias_attr,
name=name)
decoded_out = fluid.layers.ctc_greedy_decoder(
input=predict, blank=self.char_num)
predicts = {'predict': predict, 'decoded_out': decoded_out}
class CTC(nn.Layer):
def __init__(self, in_channels, out_channels, fc_decay=1e-5, **kwargs):
super(CTC, self).__init__()
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=fc_decay, k=in_channels, name='ctc_fc')
self.fc = nn.Linear(
in_channels,
out_channels,
weight_attr=weight_attr,
bias_attr=bias_attr,
name='ctc_fc')
self.out_channels = out_channels
def forward(self, x, labels=None):
predicts = self.fc(x)
return predicts

View File

@ -1,100 +0,0 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
import paddle.fluid.layers as layers
class EncoderWithReshape(object):
def __init__(self, params):
super(EncoderWithReshape, self).__init__()
def __call__(self, inputs):
sliced_feature = layers.im2sequence(
input=inputs,
stride=[1, 1],
filter_size=[inputs.shape[2], 1],
name="sliced_feature")
return sliced_feature
class EncoderWithRNN(object):
def __init__(self, params):
super(EncoderWithRNN, self).__init__()
self.rnn_hidden_size = params['SeqRNN']['hidden_size']
def __call__(self, inputs):
lstm_list = []
name_prefix = "lstm"
rnn_hidden_size = self.rnn_hidden_size
for no in range(1, 3):
if no == 1:
is_reverse = False
else:
is_reverse = True
name = "%s_st1_fc%d" % (name_prefix, no)
fc = layers.fc(input=inputs,
size=rnn_hidden_size * 4,
param_attr=fluid.ParamAttr(name=name + "_w"),
bias_attr=fluid.ParamAttr(name=name + "_b"),
name=name)
name = "%s_st1_out%d" % (name_prefix, no)
lstm, _ = layers.dynamic_lstm(
input=fc,
size=rnn_hidden_size * 4,
is_reverse=is_reverse,
param_attr=fluid.ParamAttr(name=name + "_w"),
bias_attr=fluid.ParamAttr(name=name + "_b"),
use_peepholes=False)
name = "%s_st2_fc%d" % (name_prefix, no)
fc = layers.fc(input=lstm,
size=rnn_hidden_size * 4,
param_attr=fluid.ParamAttr(name=name + "_w"),
bias_attr=fluid.ParamAttr(name=name + "_b"),
name=name)
name = "%s_st2_out%d" % (name_prefix, no)
lstm, _ = layers.dynamic_lstm(
input=fc,
size=rnn_hidden_size * 4,
is_reverse=is_reverse,
param_attr=fluid.ParamAttr(name=name + "_w"),
bias_attr=fluid.ParamAttr(name=name + "_b"),
use_peepholes=False)
lstm_list.append(lstm)
return lstm_list
class SequenceEncoder(object):
def __init__(self, params):
super(SequenceEncoder, self).__init__()
self.encoder_type = params['encoder_type']
self.encoder_reshape = EncoderWithReshape(params)
if self.encoder_type == "rnn":
self.encoder_rnn = EncoderWithRNN(params)
def __call__(self, inputs):
if self.encoder_type == "reshape":
encoder_features = self.encoder_reshape(inputs)
elif self.encoder_type == "rnn":
inputs = self.encoder_reshape(inputs)
encoder_features = self.encoder_rnn(inputs)
else:
assert False, "Unsupport encoder_type:%s"\
% self.encoder_type
return encoder_features

View File

@ -1,230 +0,0 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import numpy as np
from .self_attention.model import wrap_encoder
from .self_attention.model import wrap_encoder_forFeature
gradient_clip = 10
class SRNPredict(object):
def __init__(self, params):
super(SRNPredict, self).__init__()
self.char_num = params['char_num']
self.max_length = params['max_text_length']
self.num_heads = params['num_heads']
self.num_encoder_TUs = params['num_encoder_TUs']
self.num_decoder_TUs = params['num_decoder_TUs']
self.hidden_dims = params['hidden_dims']
def pvam(self, inputs, others):
b, c, h, w = inputs.shape
conv_features = fluid.layers.reshape(x=inputs, shape=[-1, c, h * w])
conv_features = fluid.layers.transpose(x=conv_features, perm=[0, 2, 1])
#===== Transformer encoder =====
b, t, c = conv_features.shape
encoder_word_pos = others["encoder_word_pos"]
gsrm_word_pos = others["gsrm_word_pos"]
enc_inputs = [conv_features, encoder_word_pos, None]
word_features = wrap_encoder_forFeature(
src_vocab_size=-1,
max_length=t,
n_layer=self.num_encoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True,
enc_inputs=enc_inputs, )
fluid.clip.set_gradient_clip(
fluid.clip.GradientClipByValue(gradient_clip))
#===== Parallel Visual Attention Module =====
b, t, c = word_features.shape
word_features = fluid.layers.fc(word_features, c, num_flatten_dims=2)
word_features_ = fluid.layers.reshape(word_features, [-1, 1, t, c])
word_features_ = fluid.layers.expand(word_features_,
[1, self.max_length, 1, 1])
word_pos_feature = fluid.layers.embedding(gsrm_word_pos,
[self.max_length, c])
word_pos_ = fluid.layers.reshape(word_pos_feature,
[-1, self.max_length, 1, c])
word_pos_ = fluid.layers.expand(word_pos_, [1, 1, t, 1])
temp = fluid.layers.elementwise_add(
word_features_, word_pos_, act='tanh')
attention_weight = fluid.layers.fc(input=temp,
size=1,
num_flatten_dims=3,
bias_attr=False)
attention_weight = fluid.layers.reshape(
x=attention_weight, shape=[-1, self.max_length, t])
attention_weight = fluid.layers.softmax(input=attention_weight, axis=-1)
pvam_features = fluid.layers.matmul(attention_weight,
word_features) #[b, max_length, c]
return pvam_features
def gsrm(self, pvam_features, others):
#===== GSRM Visual-to-semantic embedding block =====
b, t, c = pvam_features.shape
word_out = fluid.layers.fc(
input=fluid.layers.reshape(pvam_features, [-1, c]),
size=self.char_num,
act="softmax")
#word_out.stop_gradient = True
word_ids = fluid.layers.argmax(word_out, axis=1)
word_ids.stop_gradient = True
word_ids = fluid.layers.reshape(x=word_ids, shape=[-1, t, 1])
#===== GSRM Semantic reasoning block =====
"""
This module is achieved through bi-transformers,
ngram_feature1 is the froward one, ngram_fetaure2 is the backward one
"""
pad_idx = self.char_num
gsrm_word_pos = others["gsrm_word_pos"]
gsrm_slf_attn_bias1 = others["gsrm_slf_attn_bias1"]
gsrm_slf_attn_bias2 = others["gsrm_slf_attn_bias2"]
def prepare_bi(word_ids):
"""
prepare bi for gsrm
word1 for forward; word2 for backward
"""
word1 = fluid.layers.cast(word_ids, "float32")
word1 = fluid.layers.pad(word1, [0, 0, 1, 0, 0, 0],
pad_value=1.0 * pad_idx)
word1 = fluid.layers.cast(word1, "int64")
word1 = word1[:, :-1, :]
word2 = word_ids
return word1, word2
word1, word2 = prepare_bi(word_ids)
word1.stop_gradient = True
word2.stop_gradient = True
enc_inputs_1 = [word1, gsrm_word_pos, gsrm_slf_attn_bias1]
enc_inputs_2 = [word2, gsrm_word_pos, gsrm_slf_attn_bias2]
gsrm_feature1 = wrap_encoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True,
enc_inputs=enc_inputs_1, )
gsrm_feature2 = wrap_encoder(
src_vocab_size=self.char_num + 1,
max_length=self.max_length,
n_layer=self.num_decoder_TUs,
n_head=self.num_heads,
d_key=int(self.hidden_dims / self.num_heads),
d_value=int(self.hidden_dims / self.num_heads),
d_model=self.hidden_dims,
d_inner_hid=self.hidden_dims,
prepostprocess_dropout=0.1,
attention_dropout=0.1,
relu_dropout=0.1,
preprocess_cmd="n",
postprocess_cmd="da",
weight_sharing=True,
enc_inputs=enc_inputs_2, )
gsrm_feature2 = fluid.layers.pad(gsrm_feature2, [0, 0, 0, 1, 0, 0],
pad_value=0.)
gsrm_feature2 = gsrm_feature2[:, 1:, ]
gsrm_features = gsrm_feature1 + gsrm_feature2
b, t, c = gsrm_features.shape
gsrm_out = fluid.layers.matmul(
x=gsrm_features,
y=fluid.default_main_program().global_block().var(
"src_word_emb_table"),
transpose_y=True)
b, t, c = gsrm_out.shape
gsrm_out = fluid.layers.softmax(input=fluid.layers.reshape(gsrm_out,
[-1, c]))
return gsrm_features, word_out, gsrm_out
def vsfd(self, pvam_features, gsrm_features):
#===== Visual-Semantic Fusion Decoder Module =====
b, t, c1 = pvam_features.shape
b, t, c2 = gsrm_features.shape
combine_features_ = fluid.layers.concat(
[pvam_features, gsrm_features], axis=2)
img_comb_features_ = fluid.layers.reshape(
x=combine_features_, shape=[-1, c1 + c2])
img_comb_features_map = fluid.layers.fc(input=img_comb_features_,
size=c1,
act="sigmoid")
img_comb_features_map = fluid.layers.reshape(
x=img_comb_features_map, shape=[-1, t, c1])
combine_features = img_comb_features_map * pvam_features + (
1.0 - img_comb_features_map) * gsrm_features
img_comb_features = fluid.layers.reshape(
x=combine_features, shape=[-1, c1])
fc_out = fluid.layers.fc(input=img_comb_features,
size=self.char_num,
act="softmax")
return fc_out
def __call__(self, inputs, others, mode=None):
pvam_features = self.pvam(inputs, others)
gsrm_features, word_out, gsrm_out = self.gsrm(pvam_features, others)
final_out = self.vsfd(pvam_features, gsrm_features)
_, decoded_out = fluid.layers.topk(input=final_out, k=1)
predicts = {
'predict': final_out,
'decoded_out': decoded_out,
'word_out': word_out,
'gsrm_out': gsrm_out
}
return predicts

View File

@ -1,485 +0,0 @@
from functools import partial
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
encoder_data_input_fields = (
"src_word",
"src_pos",
"src_slf_attn_bias", )
def wrap_layer_with_block(layer, block_idx):
"""
Make layer define support indicating block, by which we can add layers
to other blocks within current block. This will make it easy to define
cache among while loop.
"""
class BlockGuard(object):
"""
BlockGuard class.
BlockGuard class is used to switch to the given block in a program by
using the Python `with` keyword.
"""
def __init__(self, block_idx=None, main_program=None):
self.main_program = fluid.default_main_program(
) if main_program is None else main_program
self.old_block_idx = self.main_program.current_block().idx
self.new_block_idx = block_idx
def __enter__(self):
self.main_program.current_block_idx = self.new_block_idx
def __exit__(self, exc_type, exc_val, exc_tb):
self.main_program.current_block_idx = self.old_block_idx
if exc_type is not None:
return False # re-raise exception
return True
def layer_wrapper(*args, **kwargs):
with BlockGuard(block_idx):
return layer(*args, **kwargs)
return layer_wrapper
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
gather_idx=None,
static_kv=False):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError(
"Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
fc_layer = wrap_layer_with_block(
layers.fc, fluid.default_main_program().current_block()
.parent_idx) if cache is not None and static_kv else layers.fc
k = fc_layer(
input=keys,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
v = fc_layer(
input=values,
size=d_value * n_head,
bias_attr=False,
num_flatten_dims=2)
return q, k, v
def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Reshape input tensors at the last dimension to split multi-heads
and then transpose. Specifically, transform the input tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] to the output tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped_q = layers.reshape(
x=queries, shape=[0, 0, n_head, d_key], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
q = layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
reshape_layer = wrap_layer_with_block(
layers.reshape,
fluid.default_main_program().current_block()
.parent_idx) if cache is not None and static_kv else layers.reshape
transpose_layer = wrap_layer_with_block(
layers.transpose,
fluid.default_main_program().current_block().
parent_idx) if cache is not None and static_kv else layers.transpose
reshaped_k = reshape_layer(
x=keys, shape=[0, 0, n_head, d_key], inplace=True)
k = transpose_layer(x=reshaped_k, perm=[0, 2, 1, 3])
reshaped_v = reshape_layer(
x=values, shape=[0, 0, n_head, d_value], inplace=True)
v = transpose_layer(x=reshaped_v, perm=[0, 2, 1, 3])
if cache is not None: # only for faster inference
if static_kv: # For encoder-decoder attention in inference
cache_k, cache_v = cache["static_k"], cache["static_v"]
# To init the static_k and static_v in cache.
# Maybe we can use condition_op(if_else) to do these at the first
# step in while loop to replace these, however it might be less
# efficient.
static_cache_init = wrap_layer_with_block(
layers.assign,
fluid.default_main_program().current_block().parent_idx)
static_cache_init(k, cache_k)
static_cache_init(v, cache_v)
else: # For decoder self-attention in inference
cache_k, cache_v = cache["k"], cache["v"]
# gather cell states corresponding to selected parent
select_k = layers.gather(cache_k, index=gather_idx)
select_v = layers.gather(cache_v, index=gather_idx)
if not static_kv:
# For self attention in inference, use cache and concat time steps.
select_k = layers.concat([select_k, k], axis=2)
select_v = layers.concat([select_v, v], axis=2)
# update cell states(caches) cached in global block
layers.assign(select_k, cache_k)
layers.assign(select_v, cache_v)
return q, select_k, select_v
return q, k, v
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(
x=trans_x,
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
# print(q)
# print(k)
product = layers.matmul(x=q, y=k, transpose_y=True, alpha=d_key**-0.5)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(
weights, dropout_prob=dropout_rate, seed=None, is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
bias_attr=False,
num_flatten_dims=2)
return proj_out
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act="relu")
if dropout_rate:
hidden = layers.dropout(
hidden, dropout_prob=dropout_rate, seed=None, is_test=False)
out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out = layers.layer_norm(
out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.initializer.Constant(1.),
bias_attr=fluid.initializer.Constant(0.))
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(
out, dropout_prob=dropout_rate, seed=None, is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def prepare_encoder(
src_word, # [b,t,c]
src_pos,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0.,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
"""Add word embeddings and position encodings.
The output tensor has a shape of:
[batch_size, max_src_length_in_batch, d_model].
This module is used at the bottom of the encoder stacks.
"""
src_word_emb = src_word
src_word_emb = layers.cast(src_word_emb, 'float32')
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
src_pos_enc = layers.embedding(
src_pos,
size=[src_max_len, src_emb_dim],
param_attr=fluid.ParamAttr(
name=pos_enc_param_name, trainable=False))
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
return layers.dropout(
enc_input, dropout_prob=dropout_rate, seed=None,
is_test=False) if dropout_rate else enc_input
def prepare_decoder(src_word,
src_pos,
src_vocab_size,
src_emb_dim,
src_max_len,
dropout_rate=0.,
bos_idx=0,
word_emb_param_name=None,
pos_enc_param_name=None):
"""Add word embeddings and position encodings.
The output tensor has a shape of:
[batch_size, max_src_length_in_batch, d_model].
This module is used at the bottom of the encoder stacks.
"""
src_word_emb = layers.embedding(
src_word,
size=[src_vocab_size, src_emb_dim],
padding_idx=bos_idx, # set embedding of bos to 0
param_attr=fluid.ParamAttr(
name=word_emb_param_name,
initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
src_pos_enc = layers.embedding(
src_pos,
size=[src_max_len, src_emb_dim],
param_attr=fluid.ParamAttr(
name=pos_enc_param_name, trainable=False))
src_pos_enc.stop_gradient = True
enc_input = src_word_emb + src_pos_enc
return layers.dropout(
enc_input, dropout_prob=dropout_rate, seed=None,
is_test=False) if dropout_rate else enc_input
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(
pre_process_layer(enc_input, preprocess_cmd,
prepostprocess_dropout), None, None, attn_bias, d_key,
d_value, d_model, n_head, attention_dropout)
attn_output = post_process_layer(enc_input, attn_output, postprocess_cmd,
prepostprocess_dropout)
ffd_output = positionwise_feed_forward(
pre_process_layer(attn_output, preprocess_cmd, prepostprocess_dropout),
d_inner_hid, d_model, relu_dropout)
return post_process_layer(attn_output, ffd_output, postprocess_cmd,
prepostprocess_dropout)
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd="n",
postprocess_cmd="da"):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(
enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd, )
enc_input = enc_output
enc_output = pre_process_layer(enc_output, preprocess_cmd,
prepostprocess_dropout)
return enc_output
def wrap_encoder_forFeature(src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
enc_inputs=None,
bos_idx=0):
"""
The wrapper assembles together all needed layers for the encoder.
img, src_pos, src_slf_attn_bias = enc_inputs
img
"""
conv_features, src_pos, src_slf_attn_bias = enc_inputs #
b, t, c = conv_features.shape
enc_input = prepare_encoder(
conv_features,
src_pos,
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx,
word_emb_param_name="src_word_emb_table")
enc_output = encoder(
enc_input,
src_slf_attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd, )
return enc_output
def wrap_encoder(src_vocab_size,
max_length,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd,
weight_sharing,
enc_inputs=None,
bos_idx=0):
"""
The wrapper assembles together all needed layers for the encoder.
img, src_pos, src_slf_attn_bias = enc_inputs
img
"""
src_word, src_pos, src_slf_attn_bias = enc_inputs #
enc_input = prepare_decoder(
src_word,
src_pos,
src_vocab_size,
d_model,
max_length,
prepostprocess_dropout,
bos_idx=bos_idx,
word_emb_param_name="src_word_emb_table")
enc_output = encoder(
enc_input,
src_slf_attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
preprocess_cmd,
postprocess_cmd, )
return enc_output

View File

@ -11,3 +11,22 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
def build_loss(config):
# det loss
from .det_db_loss import DBLoss
# rec loss
from .rec_ctc_loss import CTCLoss
support_dict = ['DBLoss', 'CTCLoss']
config = copy.deepcopy(config)
module_name = config.pop('name')
assert module_name in support_dict, Exception('loss only support {}'.format(
support_dict))
module_class = eval(module_name)(**config)
return module_class

View File

@ -1,16 +1,16 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
@ -18,99 +18,189 @@ from __future__ import print_function
import numpy as np
import paddle.fluid as fluid
import paddle
from paddle import nn
import paddle.nn.functional as F
def BalanceLoss(pred,
gt,
mask,
balance_loss=True,
main_loss_type="DiceLoss",
negative_ratio=3,
return_origin=False,
eps=1e-6):
"""
The BalanceLoss for Differentiable Binarization text detection
args:
pred (variable): predicted feature maps.
gt (variable): ground truth feature maps.
mask (variable): masked maps.
balance_loss (bool): whether balance loss or not, default is True
main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss',
'Euclidean','BCELoss', 'MaskL1Loss'], default is 'DiceLoss'.
negative_ratio (int|float): float, default is 3.
return_origin (bool): whether return unbalanced loss or not, default is False.
eps (float): default is 1e-6.
return: (variable) balanced loss
"""
positive = gt * mask
negative = (1 - gt) * mask
class BalanceLoss(nn.Layer):
def __init__(self,
balance_loss=True,
main_loss_type='DiceLoss',
negative_ratio=3,
return_origin=False,
eps=1e-6,
**kwargs):
"""
The BalanceLoss for Differentiable Binarization text detection
args:
balance_loss (bool): whether balance loss or not, default is True
main_loss_type (str): can only be one of ['CrossEntropy','DiceLoss',
'Euclidean','BCELoss', 'MaskL1Loss'], default is 'DiceLoss'.
negative_ratio (int|float): float, default is 3.
return_origin (bool): whether return unbalanced loss or not, default is False.
eps (float): default is 1e-6.
"""
super(BalanceLoss, self).__init__()
self.balance_loss = balance_loss
self.main_loss_type = main_loss_type
self.negative_ratio = negative_ratio
self.main_loss_type = main_loss_type
self.return_origin = return_origin
self.eps = eps
positive_count = fluid.layers.reduce_sum(positive)
positive_count_int = fluid.layers.cast(positive_count, dtype=np.int32)
negative_count = min(
fluid.layers.reduce_sum(negative), positive_count * negative_ratio)
negative_count_int = fluid.layers.cast(negative_count, dtype=np.int32)
if self.main_loss_type == "CrossEntropy":
self.loss = nn.CrossEntropyLoss()
elif self.main_loss_type == "Euclidean":
self.loss = nn.MSELoss()
elif self.main_loss_type == "DiceLoss":
self.loss = DiceLoss(self.eps)
elif self.main_loss_type == "BCELoss":
self.loss = BCELoss(reduction='none')
elif self.main_loss_type == "MaskL1Loss":
self.loss = MaskL1Loss(self.eps)
else:
loss_type = [
'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss'
]
raise Exception(
"main_loss_type in BalanceLoss() can only be one of {}".format(
loss_type))
if main_loss_type == "CrossEntropy":
loss = fluid.layers.cross_entropy(input=pred, label=gt, soft_label=True)
loss = fluid.layers.reduce_mean(loss)
elif main_loss_type == "Euclidean":
loss = fluid.layers.square(pred - gt)
loss = fluid.layers.reduce_mean(loss)
elif main_loss_type == "DiceLoss":
loss = DiceLoss(pred, gt, mask)
elif main_loss_type == "BCELoss":
loss = fluid.layers.sigmoid_cross_entropy_with_logits(pred, label=gt)
elif main_loss_type == "MaskL1Loss":
loss = MaskL1Loss(pred, gt, mask)
else:
loss_type = [
'CrossEntropy', 'DiceLoss', 'Euclidean', 'BCELoss', 'MaskL1Loss'
]
raise Exception("main_loss_type in BalanceLoss() can only be one of {}".
format(loss_type))
def forward(self, pred, gt, mask=None):
"""
The BalanceLoss for Differentiable Binarization text detection
args:
pred (variable): predicted feature maps.
gt (variable): ground truth feature maps.
mask (variable): masked maps.
return: (variable) balanced loss
"""
# if self.main_loss_type in ['DiceLoss']:
# # For the loss that returns to scalar value, perform ohem on the mask
# mask = ohem_batch(pred, gt, mask, self.negative_ratio)
# loss = self.loss(pred, gt, mask)
# return loss
if not balance_loss:
positive = gt * mask
negative = (1 - gt) * mask
positive_count = int(positive.sum())
negative_count = int(
min(negative.sum(), positive_count * self.negative_ratio))
loss = self.loss(pred, gt, mask=mask)
if not self.balance_loss:
return loss
positive_loss = positive * loss
negative_loss = negative * loss
negative_loss = paddle.reshape(negative_loss, shape=[-1])
if negative_count > 0:
sort_loss = negative_loss.sort(descending=True)
negative_loss = sort_loss[:negative_count]
# negative_loss, _ = paddle.topk(negative_loss, k=negative_count_int)
balance_loss = (positive_loss.sum() + negative_loss.sum()) / (
positive_count + negative_count + self.eps)
else:
balance_loss = positive_loss.sum() / (positive_count + self.eps)
if self.return_origin:
return balance_loss, loss
return balance_loss
class DiceLoss(nn.Layer):
def __init__(self, eps=1e-6):
super(DiceLoss, self).__init__()
self.eps = eps
def forward(self, pred, gt, mask, weights=None):
"""
DiceLoss function.
"""
assert pred.shape == gt.shape
assert pred.shape == mask.shape
if weights is not None:
assert weights.shape == mask.shape
mask = weights * mask
intersection = paddle.sum(pred * gt * mask)
union = paddle.sum(pred * mask) + paddle.sum(gt * mask) + self.eps
loss = 1 - 2.0 * intersection / union
assert loss <= 1
return loss
positive_loss = positive * loss
negative_loss = negative * loss
negative_loss = fluid.layers.reshape(negative_loss, shape=[-1])
negative_loss, _ = fluid.layers.topk(negative_loss, k=negative_count_int)
balance_loss = (fluid.layers.reduce_sum(positive_loss) +
fluid.layers.reduce_sum(negative_loss)) / (
positive_count + negative_count + eps)
if return_origin:
return balance_loss, loss
return balance_loss
class MaskL1Loss(nn.Layer):
def __init__(self, eps=1e-6):
super(MaskL1Loss, self).__init__()
self.eps = eps
def forward(self, pred, gt, mask):
"""
Mask L1 Loss
"""
loss = (paddle.abs(pred - gt) * mask).sum() / (mask.sum() + self.eps)
loss = paddle.mean(loss)
return loss
def DiceLoss(pred, gt, mask, weights=None, eps=1e-6):
"""
DiceLoss function.
"""
class BCELoss(nn.Layer):
def __init__(self, reduction='mean'):
super(BCELoss, self).__init__()
self.reduction = reduction
assert pred.shape == gt.shape
assert pred.shape == mask.shape
if weights is not None:
assert weights.shape == mask.shape
mask = weights * mask
intersection = fluid.layers.reduce_sum(pred * gt * mask)
union = fluid.layers.reduce_sum(pred * mask) + fluid.layers.reduce_sum(
gt * mask) + eps
loss = 1 - 2.0 * intersection / union
assert loss <= 1
return loss
def forward(self, input, label, mask=None, weight=None, name=None):
loss = F.binary_cross_entropy(input, label, reduction=self.reduction)
return loss
def MaskL1Loss(pred, gt, mask, eps=1e-6):
"""
Mask L1 Loss
"""
loss = fluid.layers.reduce_sum((fluid.layers.abs(pred - gt) * mask)) / (
fluid.layers.reduce_sum(mask) + eps)
loss = fluid.layers.reduce_mean(loss)
return loss
def ohem_single(score, gt_text, training_mask, ohem_ratio):
pos_num = (int)(np.sum(gt_text > 0.5)) - (
int)(np.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_num = (int)(np.sum(gt_text <= 0.5))
neg_num = (int)(min(pos_num * ohem_ratio, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_score = score[gt_text <= 0.5]
# 将负样本得分从高到低排序
neg_score_sorted = np.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
# 选出 得分高的 负样本 和正样本 的 mask
selected_mask = ((score >= threshold) |
(gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = selected_mask.reshape(
1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
def ohem_batch(scores, gt_texts, training_masks, ohem_ratio):
scores = scores.numpy()
gt_texts = gt_texts.numpy()
training_masks = training_masks.numpy()
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(
ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[
i, :, :], ohem_ratio))
selected_masks = np.concatenate(selected_masks, 0)
selected_masks = paddle.to_variable(selected_masks)
return selected_masks

View File

@ -1,68 +1,71 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
class DBLoss(object):
class DBLoss(nn.Layer):
"""
Differentiable Binarization (DB) Loss Function
args:
param (dict): the super paramter for DB Loss
"""
def __init__(self, params):
def __init__(self,
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
**kwargs):
super(DBLoss, self).__init__()
self.balance_loss = params['balance_loss']
self.main_loss_type = params['main_loss_type']
self.alpha = alpha
self.beta = beta
self.dice_loss = DiceLoss(eps=eps)
self.l1_loss = MaskL1Loss(eps=eps)
self.bce_loss = BalanceLoss(
balance_loss=balance_loss,
main_loss_type=main_loss_type,
negative_ratio=ohem_ratio)
self.alpha = params['alpha']
self.beta = params['beta']
self.ohem_ratio = params['ohem_ratio']
def forward(self, predicts, labels):
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
1:]
shrink_maps = predicts[:, 0, :, :]
threshold_maps = predicts[:, 1, :, :]
binary_maps = predicts[:, 2, :, :]
def __call__(self, predicts, labels):
label_shrink_map = labels['shrink_map']
label_shrink_mask = labels['shrink_mask']
label_threshold_map = labels['threshold_map']
label_threshold_mask = labels['threshold_mask']
pred = predicts['maps']
shrink_maps = pred[:, 0, :, :]
threshold_maps = pred[:, 1, :, :]
binary_maps = pred[:, 2, :, :]
loss_shrink_maps = BalanceLoss(
shrink_maps,
label_shrink_map,
label_shrink_mask,
balance_loss=self.balance_loss,
main_loss_type=self.main_loss_type,
negative_ratio=self.ohem_ratio)
loss_threshold_maps = MaskL1Loss(threshold_maps, label_threshold_map,
label_threshold_mask)
loss_binary_maps = DiceLoss(binary_maps, label_shrink_map,
label_shrink_mask)
loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
label_shrink_mask)
loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
label_threshold_mask)
loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
label_shrink_mask)
loss_shrink_maps = self.alpha * loss_shrink_maps
loss_threshold_maps = self.beta * loss_threshold_maps
loss_all = loss_shrink_maps + loss_threshold_maps\
+ loss_binary_maps
losses = {'total_loss':loss_all,\
"loss_shrink_maps":loss_shrink_maps,\
"loss_threshold_maps":loss_threshold_maps,\
"loss_binary_maps":loss_binary_maps}
loss_all = loss_shrink_maps + loss_threshold_maps \
+ loss_binary_maps
losses = {'loss': loss_all, \
"loss_shrink_maps": loss_shrink_maps, \
"loss_threshold_maps": loss_threshold_maps, \
"loss_binary_maps": loss_binary_maps}
return losses

View File

@ -1,61 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
class EASTLoss(object):
"""
EAST Loss function
"""
def __init__(self, params=None):
super(EASTLoss, self).__init__()
def __call__(self, predicts, labels):
f_score = predicts['f_score']
f_geo = predicts['f_geo']
l_score = labels['score']
l_geo = labels['geo']
l_mask = labels['mask']
##dice_loss
intersection = fluid.layers.reduce_sum(f_score * l_score * l_mask)
union = fluid.layers.reduce_sum(f_score * l_mask)\
+ fluid.layers.reduce_sum(l_score * l_mask)
dice_loss = 1 - 2 * intersection / (union + 1e-5)
#smoooth_l1_loss
channels = 8
l_geo_split = fluid.layers.split(
l_geo, num_or_sections=channels + 1, dim=1)
f_geo_split = fluid.layers.split(f_geo, num_or_sections=channels, dim=1)
smooth_l1 = 0
for i in range(0, channels):
geo_diff = l_geo_split[i] - f_geo_split[i]
abs_geo_diff = fluid.layers.abs(geo_diff)
smooth_l1_sign = fluid.layers.less_than(abs_geo_diff, l_score)
smooth_l1_sign = fluid.layers.cast(smooth_l1_sign, dtype='float32')
in_loss = abs_geo_diff * abs_geo_diff * smooth_l1_sign + \
(abs_geo_diff - 0.5) * (1.0 - smooth_l1_sign)
out_loss = l_geo_split[-1] / channels * in_loss * l_score
smooth_l1 += out_loss
smooth_l1_loss = fluid.layers.reduce_mean(smooth_l1 * l_score)
dice_loss = dice_loss * 0.01
total_loss = dice_loss + smooth_l1_loss
losses = {'total_loss':total_loss, "dice_loss":dice_loss,\
"smooth_l1_loss":smooth_l1_loss}
return losses

View File

@ -1,115 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
class SASTLoss(object):
"""
SAST Loss function
"""
def __init__(self, params=None):
super(SASTLoss, self).__init__()
def __call__(self, predicts, labels):
"""
tcl_pos: N x 128 x 3
tcl_mask: N x 128 x 1
tcl_label: N x X list or LoDTensor
"""
f_score = predicts['f_score']
f_border = predicts['f_border']
f_tvo = predicts['f_tvo']
f_tco = predicts['f_tco']
l_score = labels['input_score']
l_border = labels['input_border']
l_mask = labels['input_mask']
l_tvo = labels['input_tvo']
l_tco = labels['input_tco']
#score_loss
intersection = fluid.layers.reduce_sum(f_score * l_score * l_mask)
union = fluid.layers.reduce_sum(f_score * l_mask) + fluid.layers.reduce_sum(l_score * l_mask)
score_loss = 1.0 - 2 * intersection / (union + 1e-5)
#border loss
l_border_split, l_border_norm = fluid.layers.split(l_border, num_or_sections=[4, 1], dim=1)
f_border_split = f_border
l_border_norm_split = fluid.layers.expand(x=l_border_norm, expand_times=[1, 4, 1, 1])
l_border_score = fluid.layers.expand(x=l_score, expand_times=[1, 4, 1, 1])
l_border_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 4, 1, 1])
border_diff = l_border_split - f_border_split
abs_border_diff = fluid.layers.abs(border_diff)
border_sign = abs_border_diff < 1.0
border_sign = fluid.layers.cast(border_sign, dtype='float32')
border_sign.stop_gradient = True
border_in_loss = 0.5 * abs_border_diff * abs_border_diff * border_sign + \
(abs_border_diff - 0.5) * (1.0 - border_sign)
border_out_loss = l_border_norm_split * border_in_loss
border_loss = fluid.layers.reduce_sum(border_out_loss * l_border_score * l_border_mask) / \
(fluid.layers.reduce_sum(l_border_score * l_border_mask) + 1e-5)
#tvo_loss
l_tvo_split, l_tvo_norm = fluid.layers.split(l_tvo, num_or_sections=[8, 1], dim=1)
f_tvo_split = f_tvo
l_tvo_norm_split = fluid.layers.expand(x=l_tvo_norm, expand_times=[1, 8, 1, 1])
l_tvo_score = fluid.layers.expand(x=l_score, expand_times=[1, 8, 1, 1])
l_tvo_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 8, 1, 1])
#
tvo_geo_diff = l_tvo_split - f_tvo_split
abs_tvo_geo_diff = fluid.layers.abs(tvo_geo_diff)
tvo_sign = abs_tvo_geo_diff < 1.0
tvo_sign = fluid.layers.cast(tvo_sign, dtype='float32')
tvo_sign.stop_gradient = True
tvo_in_loss = 0.5 * abs_tvo_geo_diff * abs_tvo_geo_diff * tvo_sign + \
(abs_tvo_geo_diff - 0.5) * (1.0 - tvo_sign)
tvo_out_loss = l_tvo_norm_split * tvo_in_loss
tvo_loss = fluid.layers.reduce_sum(tvo_out_loss * l_tvo_score * l_tvo_mask) / \
(fluid.layers.reduce_sum(l_tvo_score * l_tvo_mask) + 1e-5)
#tco_loss
l_tco_split, l_tco_norm = fluid.layers.split(l_tco, num_or_sections=[2, 1], dim=1)
f_tco_split = f_tco
l_tco_norm_split = fluid.layers.expand(x=l_tco_norm, expand_times=[1, 2, 1, 1])
l_tco_score = fluid.layers.expand(x=l_score, expand_times=[1, 2, 1, 1])
l_tco_mask = fluid.layers.expand(x=l_mask, expand_times=[1, 2, 1, 1])
#
tco_geo_diff = l_tco_split - f_tco_split
abs_tco_geo_diff = fluid.layers.abs(tco_geo_diff)
tco_sign = abs_tco_geo_diff < 1.0
tco_sign = fluid.layers.cast(tco_sign, dtype='float32')
tco_sign.stop_gradient = True
tco_in_loss = 0.5 * abs_tco_geo_diff * abs_tco_geo_diff * tco_sign + \
(abs_tco_geo_diff - 0.5) * (1.0 - tco_sign)
tco_out_loss = l_tco_norm_split * tco_in_loss
tco_loss = fluid.layers.reduce_sum(tco_out_loss * l_tco_score * l_tco_mask) / \
(fluid.layers.reduce_sum(l_tco_score * l_tco_mask) + 1e-5)
# total loss
tvo_lw, tco_lw = 1.5, 1.5
score_lw, border_lw = 1.0, 1.0
total_loss = score_loss * score_lw + border_loss * border_lw + \
tvo_loss * tvo_lw + tco_loss * tco_lw
losses = {'total_loss':total_loss, "score_loss":score_loss,\
"border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
return losses

View File

@ -1,38 +0,0 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
import numpy as np
class AttentionLoss(object):
def __init__(self, params):
super(AttentionLoss, self).__init__()
self.char_num = params['char_num']
def __call__(self, predicts, labels):
predict = predicts['predict']
label_out = labels['label_out']
label_out = fluid.layers.cast(x=label_out, dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label_out)
sum_cost = fluid.layers.reduce_sum(cost)
return sum_cost

View File

@ -1,36 +1,36 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
from paddle import nn
class CTCLoss(object):
def __init__(self, params):
class CTCLoss(nn.Layer):
def __init__(self, **kwargs):
super(CTCLoss, self).__init__()
self.char_num = params['char_num']
self.loss_func = nn.CTCLoss(blank=0, reduction='none')
def __call__(self, predicts, labels):
predict = predicts['predict']
label = labels['label']
cost = fluid.layers.warpctc(
input=predict, label=label, blank=self.char_num, norm_by_times=True)
sum_cost = fluid.layers.reduce_sum(cost)
return sum_cost
def __call__(self, predicts, batch):
predicts = predicts.transpose((1, 0, 2))
N, B, _ = predicts.shape
preds_lengths = paddle.to_tensor([N] * B, dtype='int64')
labels = batch[1].astype("int32")
label_lengths = batch[2].astype('int64')
loss = self.loss_func(predicts, labels, preds_lengths, label_lengths)
loss = loss.mean()
return {'loss': loss}

View File

@ -1,55 +0,0 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.fluid as fluid
class SRNLoss(object):
def __init__(self, params):
super(SRNLoss, self).__init__()
self.char_num = params['char_num']
def __call__(self, predicts, others):
predict = predicts['predict']
word_predict = predicts['word_out']
gsrm_predict = predicts['gsrm_out']
label = others['label']
lbl_weight = others['lbl_weight']
casted_label = fluid.layers.cast(x=label, dtype='int64')
cost_word = fluid.layers.cross_entropy(
input=word_predict, label=casted_label)
cost_gsrm = fluid.layers.cross_entropy(
input=gsrm_predict, label=casted_label)
cost_vsfd = fluid.layers.cross_entropy(
input=predict, label=casted_label)
cost_word = fluid.layers.reshape(
x=fluid.layers.reduce_sum(cost_word), shape=[1])
cost_gsrm = fluid.layers.reshape(
x=fluid.layers.reduce_sum(cost_gsrm), shape=[1])
cost_vsfd = fluid.layers.reshape(
x=fluid.layers.reduce_sum(cost_vsfd), shape=[1])
sum_cost = fluid.layers.sum(
[cost_word, cost_vsfd * 2.0, cost_gsrm * 0.15])
return [sum_cost, cost_vsfd, cost_word]

View File

@ -11,3 +11,17 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['build_neck']
def build_neck(config):
from .fpn import FPN
from .rnn import SequenceEncoder
support_dict = ['FPN', 'SequenceEncoder']
module_name = config.pop('name')
assert module_name in support_dict, Exception('neck only support {}'.format(
support_dict))
module_class = eval(module_name)(**config)
return module_class

113
ppocr/modeling/necks/fpn.py Normal file
View File

@ -0,0 +1,113 @@
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
class FPN(nn.Layer):
def __init__(self, in_channels, out_channels, **kwargs):
super(FPN, self).__init__()
self.out_channels = out_channels
weight_attr = paddle.nn.initializer.MSRA(uniform=False)
self.in2_conv = nn.Conv2d(
in_channels=in_channels[0],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_51.w_0', initializer=weight_attr),
bias_attr=False)
self.in3_conv = nn.Conv2d(
in_channels=in_channels[1],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_50.w_0', initializer=weight_attr),
bias_attr=False)
self.in4_conv = nn.Conv2d(
in_channels=in_channels[2],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_49.w_0', initializer=weight_attr),
bias_attr=False)
self.in5_conv = nn.Conv2d(
in_channels=in_channels[3],
out_channels=self.out_channels,
kernel_size=1,
weight_attr=ParamAttr(
name='conv2d_48.w_0', initializer=weight_attr),
bias_attr=False)
self.p5_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_52.w_0', initializer=weight_attr),
bias_attr=False)
self.p4_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_53.w_0', initializer=weight_attr),
bias_attr=False)
self.p3_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_54.w_0', initializer=weight_attr),
bias_attr=False)
self.p2_conv = nn.Conv2d(
in_channels=self.out_channels,
out_channels=self.out_channels // 4,
kernel_size=3,
padding=1,
weight_attr=ParamAttr(
name='conv2d_55.w_0', initializer=weight_attr),
bias_attr=False)
def forward(self, x):
c2, c3, c4, c5 = x
in5 = self.in5_conv(c5)
in4 = self.in4_conv(c4)
in3 = self.in3_conv(c3)
in2 = self.in2_conv(c2)
out4 = in4 + F.resize_nearest(in5, scale=2) # 1/16
out3 = in3 + F.resize_nearest(out4, scale=2) # 1/8
out2 = in2 + F.resize_nearest(out3, scale=2) # 1/4
p5 = self.p5_conv(in5)
p4 = self.p4_conv(out4)
p3 = self.p3_conv(out3)
p2 = self.p2_conv(out2)
p5 = F.resize_nearest(p5, scale=8)
p4 = F.resize_nearest(p4, scale=4)
p3 = F.resize_nearest(p3, scale=2)
fuse = paddle.concat([p5, p4, p3, p2], axis=1)
return fuse

143
ppocr/modeling/necks/rnn.py Normal file
View File

@ -0,0 +1,143 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
class EncoderWithReshape(nn.Layer):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.out_channels = in_channels
def forward(self, x):
B, C, H, W = x.shape
x = x.reshape((B, C, -1))
x = x.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
return x
class Im2Seq(nn.Layer):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.out_channels = in_channels
def forward(self, x):
B, C, H, W = x.shape
assert H == 1
x = x.transpose((0, 2, 3, 1))
x = x.reshape((-1, C))
return x
class EncoderWithRNN(nn.Layer):
def __init__(self, in_channels, hidden_size):
super(EncoderWithRNN, self).__init__()
self.out_channels = hidden_size * 2
# self.lstm1_fw = nn.LSTMCell(
# in_channels,
# hidden_size,
# weight_ih_attr=ParamAttr(name='lstm_st1_fc1_w'),
# bias_ih_attr=ParamAttr(name='lstm_st1_fc1_b'),
# weight_hh_attr=ParamAttr(name='lstm_st1_out1_w'),
# bias_hh_attr=ParamAttr(name='lstm_st1_out1_b'),
# )
# self.lstm1_bw = nn.LSTMCell(
# in_channels,
# hidden_size,
# weight_ih_attr=ParamAttr(name='lstm_st1_fc2_w'),
# bias_ih_attr=ParamAttr(name='lstm_st1_fc2_b'),
# weight_hh_attr=ParamAttr(name='lstm_st1_out2_w'),
# bias_hh_attr=ParamAttr(name='lstm_st1_out2_b'),
# )
# self.lstm2_fw = nn.LSTMCell(
# hidden_size,
# hidden_size,
# weight_ih_attr=ParamAttr(name='lstm_st2_fc1_w'),
# bias_ih_attr=ParamAttr(name='lstm_st2_fc1_b'),
# weight_hh_attr=ParamAttr(name='lstm_st2_out1_w'),
# bias_hh_attr=ParamAttr(name='lstm_st2_out1_b'),
# )
# self.lstm2_bw = nn.LSTMCell(
# hidden_size,
# hidden_size,
# weight_ih_attr=ParamAttr(name='lstm_st2_fc2_w'),
# bias_ih_attr=ParamAttr(name='lstm_st2_fc2_b'),
# weight_hh_attr=ParamAttr(name='lstm_st2_out2_w'),
# bias_hh_attr=ParamAttr(name='lstm_st2_out2_b'),
# )
self.lstm = nn.LSTM(
in_channels, hidden_size, direction='bidirectional', num_layers=2)
def forward(self, x):
# fw_x, _ = self.lstm1_fw(x)
# fw_x, _ = self.lstm2_fw(fw_x)
#
# # bw
# bw_x, _ = self.lstm1_bw(x)
# bw_x, _ = self.lstm2_bw(bw_x)
# x = paddle.concat([fw_x, bw_x], axis=2)
x, _ = self.lstm(x)
return x
class EncoderWithFC(nn.Layer):
def __init__(self, in_channels, hidden_size):
super(EncoderWithFC, self).__init__()
self.out_channels = hidden_size
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
self.fc = nn.Linear(
in_channels,
hidden_size,
weight_attr=weight_attr,
bias_attr=bias_attr,
name='reduce_encoder_fea')
def forward(self, x):
x = self.fc(x)
return x
class SequenceEncoder(nn.Layer):
def __init__(self, in_channels, encoder_type, hidden_size, **kwargs):
super(SequenceEncoder, self).__init__()
self.encoder_reshape = EncoderWithReshape(in_channels)
self.out_channels = self.encoder_reshape.out_channels
if encoder_type == 'reshape':
self.only_reshape = True
else:
support_encoder_dict = {
'reshape': EncoderWithReshape,
'fc': EncoderWithFC,
'rnn': EncoderWithRNN
}
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
encoder_type, support_encoder_dict.keys())
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, hidden_size)
self.out_channels = self.encoder.out_channels
self.only_reshape = False
def forward(self, x):
x = self.encoder_reshape(x)
if not self.only_reshape:
x = self.encoder(x)
return x

View File

@ -1,261 +0,0 @@
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.param_attr import ParamAttr
import numpy as np
class LocalizationNetwork(object):
def __init__(self, params):
super(LocalizationNetwork, self).__init__()
self.F = params['num_fiducial']
self.loc_lr = params['loc_lr']
self.model_name = params['model_name']
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None):
conv = layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False)
bn_name = "bn_" + name
return layers.batch_norm(
input=conv,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
def get_initial_fiducials(self):
""" see RARE paper Fig. 6 (a) """
F = self.F
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return initial_bias
def __call__(self, image):
F = self.F
loc_lr = self.loc_lr
if self.model_name == "large":
num_filters_list = [64, 128, 256, 512]
fc_dim = 256
else:
num_filters_list = [16, 32, 64, 128]
fc_dim = 64
for fno in range(len(num_filters_list)):
num_filters = num_filters_list[fno]
name = "loc_conv%d" % fno
if fno == 0:
conv = self.conv_bn_layer(
image, num_filters, 3, act='relu', name=name)
else:
conv = self.conv_bn_layer(
pool, num_filters, 3, act='relu', name=name)
if fno == len(num_filters_list) - 1:
pool = layers.adaptive_pool2d(
input=conv, pool_size=[1, 1], pool_type='avg')
else:
pool = layers.pool2d(
input=conv,
pool_size=2,
pool_stride=2,
pool_padding=0,
pool_type='max')
name = "loc_fc1"
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
fc1 = layers.fc(input=pool,
size=fc_dim,
param_attr=fluid.param_attr.ParamAttr(
learning_rate=loc_lr,
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + "_w"),
act='relu',
name=name)
initial_bias = self.get_initial_fiducials()
initial_bias = initial_bias.reshape(-1)
name = "loc_fc2"
param_attr = fluid.param_attr.ParamAttr(
learning_rate=loc_lr,
initializer=fluid.initializer.NumpyArrayInitializer(
np.zeros([fc_dim, F * 2])),
name=name + "_w")
bias_attr = fluid.param_attr.ParamAttr(
learning_rate=loc_lr,
initializer=fluid.initializer.NumpyArrayInitializer(initial_bias),
name=name + "_b")
fc2 = layers.fc(input=fc1,
size=F * 2,
param_attr=param_attr,
bias_attr=bias_attr,
name=name)
batch_C_prime = layers.reshape(x=fc2, shape=[-1, F, 2], inplace=False)
return batch_C_prime
class GridGenerator(object):
def __init__(self, params):
super(GridGenerator, self).__init__()
self.eps = 1e-6
self.F = params['num_fiducial']
def build_C(self):
""" Return coordinates of fiducial points in I_r; C """
F = self.F
ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
ctrl_pts_y_top = -1 * np.ones(int(F / 2))
ctrl_pts_y_bottom = np.ones(int(F / 2))
ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
return C # F x 2
def build_P(self, I_r_size):
I_r_width, I_r_height = I_r_size
I_r_grid_x = (np.arange(-I_r_width, I_r_width, 2) + 1.0)\
/ I_r_width # self.I_r_width
I_r_grid_y = (np.arange(-I_r_height, I_r_height, 2) + 1.0)\
/ I_r_height # self.I_r_height
# P: self.I_r_width x self.I_r_height x 2
P = np.stack(np.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
# n (= self.I_r_width x self.I_r_height) x 2
return P.reshape([-1, 2])
def build_inv_delta_C(self, C):
""" Return inv_delta_C which is needed to calculate T """
F = self.F
hat_C = np.zeros((F, F), dtype=float) # F x F
for i in range(0, F):
for j in range(i, F):
r = np.linalg.norm(C[i] - C[j])
hat_C[i, j] = r
hat_C[j, i] = r
np.fill_diagonal(hat_C, 1)
hat_C = (hat_C**2) * np.log(hat_C)
# print(C.shape, hat_C.shape)
delta_C = np.concatenate( # F+3 x F+3
[
np.concatenate(
[np.ones((F, 1)), C, hat_C], axis=1), # F x F+3
np.concatenate(
[np.zeros((2, 3)), np.transpose(C)], axis=1), # 2 x F+3
np.concatenate(
[np.zeros((1, 3)), np.ones((1, F))], axis=1) # 1 x F+3
],
axis=0)
inv_delta_C = np.linalg.inv(delta_C)
return inv_delta_C # F+3 x F+3
def build_P_hat(self, C, P):
F = self.F
eps = self.eps
n = P.shape[0] # n (= self.I_r_width x self.I_r_height)
#P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
P_tile = np.tile(np.expand_dims(P, axis=1), (1, F, 1))
C_tile = np.expand_dims(C, axis=0) # 1 x F x 2
P_diff = P_tile - C_tile # n x F x 2
#rbf_norm: n x F
rbf_norm = np.linalg.norm(P_diff, ord=2, axis=2, keepdims=False)
#rbf: n x F
rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + eps))
P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1)
return P_hat # n x F+3
def get_expand_tensor(self, batch_C_prime):
name = "ex_fc"
initializer = fluid.initializer.ConstantInitializer(value=0.0)
param_attr = fluid.param_attr.ParamAttr(
learning_rate=0.0, initializer=initializer, name=name + "_w")
bias_attr = fluid.param_attr.ParamAttr(
learning_rate=0.0, initializer=initializer, name=name + "_b")
batch_C_ex_part_tensor = fluid.layers.fc(input=batch_C_prime,
size=6,
param_attr=param_attr,
bias_attr=bias_attr,
name=name)
batch_C_ex_part_tensor = fluid.layers.reshape(
x=batch_C_ex_part_tensor, shape=[-1, 3, 2])
return batch_C_ex_part_tensor
def __call__(self, batch_C_prime, I_r_size):
C = self.build_C()
P = self.build_P(I_r_size)
inv_delta_C = self.build_inv_delta_C(C).astype('float32')
P_hat = self.build_P_hat(C, P).astype('float32')
inv_delta_C_tensor = layers.create_tensor(dtype='float32')
layers.assign(inv_delta_C, inv_delta_C_tensor)
inv_delta_C_tensor.stop_gradient = True
P_hat_tensor = layers.create_tensor(dtype='float32')
layers.assign(P_hat, P_hat_tensor)
P_hat_tensor.stop_gradient = True
batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)
# batch_C_ex_part_tensor = create_tmp_var(
# fluid.default_main_program(),
# name='batch_C_ex_part_tensor',
# dtype='float32', shape=[-1, 3, 2])
# layers.py_func(func=get_batch_C_expand,
# x=[batch_C_prime], out=[batch_C_ex_part_tensor])
batch_C_ex_part_tensor.stop_gradient = True
batch_C_prime_with_zeros = layers.concat(
[batch_C_prime, batch_C_ex_part_tensor], axis=1)
batch_T = layers.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
batch_P_prime = layers.matmul(P_hat_tensor, batch_T)
return batch_P_prime
class TPS(object):
def __init__(self, params):
super(TPS, self).__init__()
self.loc_net = LocalizationNetwork(params)
self.grid_generator = GridGenerator(params)
def __call__(self, image):
batch_C_prime = self.loc_net(image)
I_r_size = [image.shape[3], image.shape[2]]
batch_P_prime = self.grid_generator(batch_C_prime, I_r_size)
batch_P_prime = layers.reshape(
x=batch_P_prime, shape=[-1, image.shape[2], image.shape[3], 2])
batch_I_r = layers.grid_sampler(x=image, grid=batch_P_prime)
image.stop_gradient = False
return batch_I_r

View File

@ -11,3 +11,15 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__ = ['build_transform']
def build_transform(config):
support_dict = ['']
module_name = config.pop('name')
assert module_name in support_dict, Exception(
'transform only support {}'.format(support_dict))
module_class = eval(module_name)(**config)
return module_class

View File

@ -1,155 +0,0 @@
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
from paddle.fluid.regularizer import L2Decay
from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter
import paddle.fluid.layers.ops as ops
from ppocr.utils.utility import initial_logger
logger = initial_logger()
def cosine_decay_with_warmup(learning_rate,
step_each_epoch,
epochs=500,
warmup_minibatch=1000):
"""Applies cosine decay to the learning rate.
lr = 0.05 * (math.cos(epoch * (math.pi / 120)) + 1)
decrease lr for every mini-batch and start with warmup.
"""
global_step = _decay_step_counter()
lr = fluid.layers.tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="learning_rate")
warmup_minibatch = fluid.layers.fill_constant(
shape=[1],
dtype='float32',
value=float(warmup_minibatch),
force_cpu=True)
with fluid.layers.control_flow.Switch() as switch:
with switch.case(global_step < warmup_minibatch):
decayed_lr = learning_rate * (1.0 * global_step / warmup_minibatch)
fluid.layers.tensor.assign(input=decayed_lr, output=lr)
with switch.default():
decayed_lr = learning_rate * \
(ops.cos((global_step - warmup_minibatch) * (math.pi / (epochs * step_each_epoch))) + 1)/2
fluid.layers.tensor.assign(input=decayed_lr, output=lr)
return lr
def AdamDecay(params, parameter_list=None):
"""
define optimizer function
args:
params(dict): the super parameters
parameter_list (list): list of Variable names to update to minimize loss
return:
"""
base_lr = params['base_lr']
beta1 = params['beta1']
beta2 = params['beta2']
l2_decay = params.get("l2_decay", 0.0)
if 'decay' in params:
supported_decay_mode = [
"cosine_decay", "cosine_decay_warmup", "piecewise_decay"
]
params = params['decay']
decay_mode = params['function']
assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
supported_decay_mode, decay_mode)
if decay_mode == "cosine_decay":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
base_lr = fluid.layers.cosine_decay(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch)
elif decay_mode == "cosine_decay_warmup":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
warmup_minibatch = params.get("warmup_minibatch", 1000)
base_lr = cosine_decay_with_warmup(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch,
warmup_minibatch=warmup_minibatch)
elif decay_mode == "piecewise_decay":
boundaries = params["boundaries"]
decay_rate = params["decay_rate"]
values = [
base_lr * decay_rate**idx
for idx in range(len(boundaries) + 1)
]
base_lr = fluid.layers.piecewise_decay(boundaries, values)
optimizer = fluid.optimizer.Adam(
learning_rate=base_lr,
beta1=beta1,
beta2=beta2,
regularization=L2Decay(regularization_coeff=l2_decay),
parameter_list=parameter_list)
return optimizer
def RMSProp(params, parameter_list=None):
"""
define optimizer function
args:
params(dict): the super parameters
parameter_list (list): list of Variable names to update to minimize loss
return:
"""
base_lr = params.get("base_lr", 0.001)
l2_decay = params.get("l2_decay", 0.00005)
if 'decay' in params:
supported_decay_mode = ["cosine_decay", "piecewise_decay"]
params = params['decay']
decay_mode = params['function']
assert decay_mode in supported_decay_mode, "Supported decay mode is {}, but got {}".format(
supported_decay_mode, decay_mode)
if decay_mode == "cosine_decay":
step_each_epoch = params['step_each_epoch']
total_epoch = params['total_epoch']
base_lr = fluid.layers.cosine_decay(
learning_rate=base_lr,
step_each_epoch=step_each_epoch,
epochs=total_epoch)
elif decay_mode == "piecewise_decay":
boundaries = params["boundaries"]
decay_rate = params["decay_rate"]
values = [
base_lr * decay_rate**idx
for idx in range(len(boundaries) + 1)
]
base_lr = fluid.layers.piecewise_decay(boundaries, values)
optimizer = fluid.optimizer.RMSProp(
learning_rate=base_lr,
regularization=fluid.regularizer.L2Decay(regularization_coeff=l2_decay))
return optimizer

View File

@ -0,0 +1,56 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
__all__ = ['build_optimizer']
def build_lr_scheduler(lr_config, epochs, step_each_epoch):
from . import learning_rate
lr_config.update({'epochs': epochs, 'step_each_epoch': step_each_epoch})
if 'name' in lr_config:
lr_name = lr_config.pop('name')
lr = getattr(learning_rate, lr_name)(**lr_config)()
else:
lr = lr_config['lr']
return lr
def build_optimizer(config, epochs, step_each_epoch, parameters):
from . import regularizer, optimizer
config = copy.deepcopy(config)
# step1 build lr
lr = build_lr_scheduler(
config.pop('learning_rate'), epochs, step_each_epoch)
# step2 build regularization
if 'regularizer' in config and config['regularizer'] is not None:
reg_config = config.pop('regularizer')
reg_name = reg_config.pop('name') + 'Decay'
reg = getattr(regularizer, reg_name)(**reg_config)()
else:
reg = None
# step3 build optimizer
optim_name = config.pop('name')
optim = getattr(optimizer, optim_name)(learning_rate=lr,
regularization=reg,
**config)
return optim(parameters), lr

View File

@ -0,0 +1,183 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle.optimizer import lr_scheduler
class Linear(object):
"""
Linear learning rate decay
Args:
lr (float): The initial learning rate. It is a python float number.
epochs(int): The decay step size. It determines the decay cycle.
end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
power(float, optional): Power of polynomial. Default: 1.0.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
lr,
epochs,
step_each_epoch,
end_lr=0.0,
power=1.0,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Linear, self).__init__()
self.lr = lr
self.epochs = epochs * step_each_epoch
self.end_lr = end_lr
self.power = power
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self):
learning_rate = lr_scheduler.PolynomialLR(
learning_rate=self.lr,
decay_steps=self.epochs,
end_lr=self.end_lr,
power=self.power,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr_scheduler.LinearLrWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.lr,
last_epoch=self.last_epoch)
return learning_rate
class Cosine(object):
"""
Cosine learning rate decay
lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
Args:
lr(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
lr,
step_each_epoch,
epochs,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Cosine, self).__init__()
self.lr = lr
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self):
learning_rate = lr_scheduler.CosineAnnealingLR(
learning_rate=self.lr, T_max=self.T_max, last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr_scheduler.LinearLrWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.lr,
last_epoch=self.last_epoch)
return learning_rate
class Step(object):
"""
Piecewise learning rate decay
Args:
step_each_epoch(int): steps each epoch
learning_rate (float): The initial learning rate. It is a python float number.
step_size (int): the interval to update.
gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
It should be less than 1.0. Default: 0.1.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
lr,
step_size,
step_each_epoch,
gamma,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Step, self).__init__()
self.step_size = step_each_epoch * step_size
self.lr = lr
self.gamma = gamma
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self):
learning_rate = lr_scheduler.StepLR(
learning_rate=self.lr,
step_size=self.step_size,
gamma=self.gamma,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr_scheduler.LinearLrWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.lr,
last_epoch=self.last_epoch)
return learning_rate
class Piecewise(object):
"""
Piecewise learning rate decay
Args:
boundaries(list): A list of steps numbers. The type of element in the list is python int.
values(list): A list of learning rate values that will be picked during different epoch boundaries.
The type of element in the list is python float.
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
step_each_epoch,
decay_epochs,
values,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(Piecewise, self).__init__()
self.boundaries = [step_each_epoch * e for e in decay_epochs]
self.values = values
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
def __call__(self):
learning_rate = lr_scheduler.PiecewiseLR(
boundaries=self.boundaries,
values=self.values,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr_scheduler.LinearLrWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.values[0],
last_epoch=self.last_epoch)
return learning_rate

View File

@ -0,0 +1,119 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle import optimizer as optim
class Momentum(object):
"""
Simple Momentum optimizer with velocity state.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self, learning_rate, momentum, weight_decay=None, **args):
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.weight_decay = weight_decay
def __call__(self, parameters):
opt = optim.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
parameters=self.weight_decay,
weight_decay=parameters)
return opt
class Adam(object):
def __init__(self,
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
parameter_list=None,
weight_decay=None,
grad_clip=None,
name=None,
lazy_mode=False,
**kwargs):
self.learning_rate = learning_rate
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.parameter_list = parameter_list
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.grad_clip = grad_clip
self.name = name
self.lazy_mode = lazy_mode
def __call__(self, parameters):
opt = optim.Adam(
learning_rate=self.learning_rate,
beta1=self.beta1,
beta2=self.beta2,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
name=self.name,
lazy_mode=self.lazy_mode,
parameters=parameters)
return opt
class RMSProp(object):
"""
Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method.
Args:
learning_rate (float|Variable) - The learning rate used to update parameters.
Can be a float value or a Variable with one float value as data element.
momentum (float) - Momentum factor.
rho (float) - rho value in equation.
epsilon (float) - avoid division by zero, default is 1e-6.
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self,
learning_rate,
momentum,
rho=0.95,
epsilon=1e-6,
weight_decay=None,
**args):
super(RMSProp, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.rho = rho
self.epsilon = epsilon
self.weight_decay = weight_decay
def __call__(self, parameters):
opt = optim.RMSProp(
learning_rate=self.learning_rate,
momentum=self.momentum,
rho=self.rho,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
parameters=parameters)
return opt

View File

@ -0,0 +1,54 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from paddle import fluid
class L1Decay(object):
"""
L1 Weight Decay Regularization, which encourages the weights to be sparse.
Args:
factor(float): regularization coeff. Default:0.0.
"""
def __init__(self, factor=0.0):
super(L1Decay, self).__init__()
self.regularization_coeff = factor
def __call__(self):
reg = fluid.regularizer.L1Decay(
regularization_coeff=self.regularization_coeff)
return reg
class L2Decay(object):
"""
L2 Weight Decay Regularization, which encourages the weights to be sparse.
Args:
factor(float): regularization coeff. Default:0.0.
"""
def __init__(self, factor=0.0):
super(L2Decay, self).__init__()
self.regularization_coeff = factor
def __call__(self):
reg = fluid.regularizer.L2Decay(
regularization_coeff=self.regularization_coeff)
return reg

View File

@ -0,0 +1,38 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
__all__ = ['build_post_process']
def build_post_process(config, global_config=None):
from .db_postprocess import DBPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode
support_dict = ['DBPostProcess', 'CTCLabelDecode', 'AttnLabelDecode']
config = copy.deepcopy(config)
module_name = config.pop('name')
if global_config is not None:
config.update(global_config)
assert module_name in support_dict, Exception(
'post process only support {}'.format(support_dict))
module_class = eval(module_name)(**config)
return module_class

View File

@ -16,11 +16,7 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
import numpy as np
import string
import cv2
from shapely.geometry import Polygon
import pyclipper
@ -31,11 +27,16 @@ class DBPostProcess(object):
The post process for Differentiable Binarization (DB).
"""
def __init__(self, params):
self.thresh = params['thresh']
self.box_thresh = params['box_thresh']
self.max_candidates = params['max_candidates']
self.unclip_ratio = params['unclip_ratio']
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
**kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
self.min_size = 3
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
@ -55,9 +56,9 @@ class DBPostProcess(object):
contours, _ = outs[0], outs[1]
num_contours = min(len(contours), self.max_candidates)
boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
scores = np.zeros((num_contours, ), dtype=np.float32)
boxes = []
scores = []
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
@ -73,17 +74,14 @@ class DBPostProcess(object):
if sside < self.min_size + 2:
continue
box = np.array(box)
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes[index, :, :] = box.astype(np.int16)
scores[index] = score
return boxes, scores
boxes.append(box.astype(np.int16))
scores.append(score)
return np.array(boxes, dtype=np.int16), scores
def unclip(self, box):
unclip_ratio = self.unclip_ratio
@ -131,28 +129,15 @@ class DBPostProcess(object):
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def __call__(self, outs_dict, ratio_list):
pred = outs_dict['maps']
pred = pred[:, 0, :, :]
def __call__(self, pred, shape_list):
pred = pred.numpy()[:, 0, :, :]
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
height, width = pred.shape[-2:]
tmp_boxes, tmp_scores = self.boxes_from_bitmap(
height, width = shape_list[batch_index]
boxes, scores = self.boxes_from_bitmap(
pred[batch_index], segmentation[batch_index], width, height)
boxes = []
for k in range(len(tmp_boxes)):
if tmp_scores[k] > self.box_thresh:
boxes.append(tmp_boxes[k])
if len(boxes) > 0:
boxes = np.array(boxes)
ratio_h, ratio_w = ratio_list[batch_index]
boxes[:, :, 0] = boxes[:, :, 0] / ratio_w
boxes[:, :, 1] = boxes[:, :, 1] / ratio_h
boxes_batch.append(boxes)
boxes_batch.append({'points': boxes})
return boxes_batch

View File

@ -0,0 +1,133 @@
import cv2
import numpy as np
import pyclipper
from shapely.geometry import Polygon
class DBPostProcess():
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=1.5):
self.min_size = 3
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
def __call__(self, pred, shape_list, is_output_polygon=False):
'''
batch: (image, polygons, ignore_tags
h_w_list: 包含[h,w]的数组
pred:
binary: text region segmentation map, with shape (N, 1,H, W)
'''
pred = pred.numpy()[:, 0, :, :]
segmentation = self.binarize(pred)
batch_out = []
for batch_index in range(pred.shape[0]):
height, width = shape_list[batch_index]
boxes, scores = self.post_p(
pred[batch_index],
segmentation[batch_index],
width,
height,
is_output_polygon=is_output_polygon)
batch_out.append({"points": boxes})
return batch_out
def binarize(self, pred):
return pred > self.thresh
def post_p(self,
pred,
bitmap,
dest_width,
dest_height,
is_output_polygon=True):
'''
_bitmap: single map with shape (H, W),
whose values are binarized as {0, 1}
'''
height, width = pred.shape
boxes = []
new_scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.005 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, unclip_ratio=self.unclip_ratio)
if len(box) > 1 or len(box) == 0:
continue
else:
continue
four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
if not is_output_polygon:
box = np.array(four_point_box)
else:
box = box.reshape(-1, 2)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box)
new_scores.append(score)
return boxes, new_scores
def unclip(self, box, unclip_ratio=1.5):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

View File

@ -1,136 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from .locality_aware_nms import nms_locality
import cv2
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
class EASTPostPocess(object):
"""
The post process for EAST.
"""
def __init__(self, params):
self.score_thresh = params['score_thresh']
self.cover_thresh = params['cover_thresh']
self.nms_thresh = params['nms_thresh']
# c++ la-nms is faster, but only support python 3.5
self.is_python35 = False
if sys.version_info.major == 3 and sys.version_info.minor == 5:
self.is_python35 = True
def restore_rectangle_quad(self, origin, geometry):
"""
Restore rectangle from quadrangle.
"""
# quad
origin_concat = np.concatenate(
(origin, origin, origin, origin), axis=1) # (n, 8)
pred_quads = origin_concat - geometry
pred_quads = pred_quads.reshape((-1, 4, 2)) # (n, 4, 2)
return pred_quads
def detect(self,
score_map,
geo_map,
score_thresh=0.8,
cover_thresh=0.1,
nms_thresh=0.2):
"""
restore text boxes from score map and geo map
"""
score_map = score_map[0]
geo_map = np.swapaxes(geo_map, 1, 0)
geo_map = np.swapaxes(geo_map, 1, 2)
# filter the score map
xy_text = np.argwhere(score_map > score_thresh)
if len(xy_text) == 0:
return []
# sort the text boxes via the y axis
xy_text = xy_text[np.argsort(xy_text[:, 0])]
#restore quad proposals
text_box_restored = self.restore_rectangle_quad(
xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
boxes[:, :8] = text_box_restored.reshape((-1, 8))
boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
if self.is_python35:
import lanms
boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
else:
boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
if boxes.shape[0] == 0:
return []
# Here we filter some low score boxes by the average score map,
# this is different from the orginal paper.
for i, box in enumerate(boxes):
mask = np.zeros_like(score_map, dtype=np.uint8)
cv2.fillPoly(mask, box[:8].reshape(
(-1, 4, 2)).astype(np.int32) // 4, 1)
boxes[i, 8] = cv2.mean(score_map, mask)[0]
boxes = boxes[boxes[:, 8] > cover_thresh]
return boxes
def sort_poly(self, p):
"""
Sort polygons.
"""
min_axis = np.argmin(np.sum(p, axis=1))
p = p[[min_axis, (min_axis + 1) % 4,\
(min_axis + 2) % 4, (min_axis + 3) % 4]]
if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
return p
else:
return p[[0, 3, 2, 1]]
def __call__(self, outs_dict, ratio_list):
score_list = outs_dict['f_score']
geo_list = outs_dict['f_geo']
img_num = len(ratio_list)
dt_boxes_list = []
for ino in range(img_num):
score = score_list[ino]
geo = geo_list[ino]
boxes = self.detect(
score_map=score,
geo_map=geo,
score_thresh=self.score_thresh,
cover_thresh=self.cover_thresh,
nms_thresh=self.nms_thresh)
boxes_norm = []
if len(boxes) > 0:
ratio_h, ratio_w = ratio_list[ino]
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h
for i_box, box in enumerate(boxes):
box = self.sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 \
or np.linalg.norm(box[3] - box[0]) < 5:
continue
boxes_norm.append(box)
dt_boxes_list.append(np.array(boxes_norm))
return dt_boxes_list

View File

@ -1 +0,0 @@
adaptor.so

View File

@ -1,140 +0,0 @@
#!/usr/bin/env python
#
# Copyright (C) 2014 Google Inc.
#
# This file is part of YouCompleteMe.
#
# YouCompleteMe is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# YouCompleteMe is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with YouCompleteMe. If not, see <http://www.gnu.org/licenses/>.
import os
import sys
import glob
import ycm_core
# These are the compilation flags that will be used in case there's no
# compilation database set (by default, one is not set).
# CHANGE THIS LIST OF FLAGS. YES, THIS IS THE DROID YOU HAVE BEEN LOOKING FOR.
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
from plumbum.cmd import python_config
flags = [
'-Wall',
'-Wextra',
'-Wnon-virtual-dtor',
'-Winvalid-pch',
'-Wno-unused-local-typedefs',
'-std=c++11',
'-x', 'c++',
'-Iinclude',
] + python_config('--cflags').split()
# Set this to the absolute path to the folder (NOT the file!) containing the
# compile_commands.json file to use that instead of 'flags'. See here for
# more details: http://clang.llvm.org/docs/JSONCompilationDatabase.html
#
# Most projects will NOT need to set this to anything; you can just change the
# 'flags' list of compilation flags.
compilation_database_folder = ''
if os.path.exists( compilation_database_folder ):
database = ycm_core.CompilationDatabase( compilation_database_folder )
else:
database = None
SOURCE_EXTENSIONS = [ '.cpp', '.cxx', '.cc', '.c', '.m', '.mm' ]
def DirectoryOfThisScript():
return os.path.dirname( os.path.abspath( __file__ ) )
def MakeRelativePathsInFlagsAbsolute( flags, working_directory ):
if not working_directory:
return list( flags )
new_flags = []
make_next_absolute = False
path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ]
for flag in flags:
new_flag = flag
if make_next_absolute:
make_next_absolute = False
if not flag.startswith( '/' ):
new_flag = os.path.join( working_directory, flag )
for path_flag in path_flags:
if flag == path_flag:
make_next_absolute = True
break
if flag.startswith( path_flag ):
path = flag[ len( path_flag ): ]
new_flag = path_flag + os.path.join( working_directory, path )
break
if new_flag:
new_flags.append( new_flag )
return new_flags
def IsHeaderFile( filename ):
extension = os.path.splitext( filename )[ 1 ]
return extension in [ '.h', '.hxx', '.hpp', '.hh' ]
def GetCompilationInfoForFile( filename ):
# The compilation_commands.json file generated by CMake does not have entries
# for header files. So we do our best by asking the db for flags for a
# corresponding source file, if any. If one exists, the flags for that file
# should be good enough.
if IsHeaderFile( filename ):
basename = os.path.splitext( filename )[ 0 ]
for extension in SOURCE_EXTENSIONS:
replacement_file = basename + extension
if os.path.exists( replacement_file ):
compilation_info = database.GetCompilationInfoForFile(
replacement_file )
if compilation_info.compiler_flags_:
return compilation_info
return None
return database.GetCompilationInfoForFile( filename )
# This is the entry point; this function is called by ycmd to produce flags for
# a file.
def FlagsForFile( filename, **kwargs ):
if database:
# Bear in mind that compilation_info.compiler_flags_ does NOT return a
# python list, but a "list-like" StringVec object
compilation_info = GetCompilationInfoForFile( filename )
if not compilation_info:
return None
final_flags = MakeRelativePathsInFlagsAbsolute(
compilation_info.compiler_flags_,
compilation_info.compiler_working_dir_ )
else:
relative_to = DirectoryOfThisScript()
final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to )
return {
'flags': final_flags,
'do_cache': True
}

Some files were not shown because too many files have changed in this diff Show More