Merge pull request #4204 from LDOUBLEV/fix_eval
[benchmark] add DB training benchmark
This commit is contained in:
commit
af0bac580f
|
@ -0,0 +1,273 @@
|
|||
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import traceback
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--filename", type=str, help="The name of log which need to analysis.")
|
||||
parser.add_argument(
|
||||
"--log_with_profiler", type=str, help="The path of train log with profiler")
|
||||
parser.add_argument(
|
||||
"--profiler_path", type=str, help="The path of profiler timeline log.")
|
||||
parser.add_argument(
|
||||
"--keyword", type=str, help="Keyword to specify analysis data")
|
||||
parser.add_argument(
|
||||
"--separator", type=str, default=None, help="Separator of different field in log")
|
||||
parser.add_argument(
|
||||
'--position', type=int, default=None, help='The position of data field')
|
||||
parser.add_argument(
|
||||
'--range', type=str, default="", help='The range of data field to intercept')
|
||||
parser.add_argument(
|
||||
'--base_batch_size', type=int, help='base_batch size on gpu')
|
||||
parser.add_argument(
|
||||
'--skip_steps', type=int, default=0, help='The number of steps to be skipped')
|
||||
parser.add_argument(
|
||||
'--model_mode', type=int, default=-1, help='Analysis mode, default value is -1')
|
||||
parser.add_argument(
|
||||
'--ips_unit', type=str, default=None, help='IPS unit')
|
||||
parser.add_argument(
|
||||
'--model_name', type=str, default=0, help='training model_name, transformer_base')
|
||||
parser.add_argument(
|
||||
'--mission_name', type=str, default=0, help='training mission name')
|
||||
parser.add_argument(
|
||||
'--direction_id', type=int, default=0, help='training direction_id')
|
||||
parser.add_argument(
|
||||
'--run_mode', type=str, default="sp", help='multi process or single process')
|
||||
parser.add_argument(
|
||||
'--index', type=int, default=1, help='{1: speed, 2:mem, 3:profiler, 6:max_batch_size}')
|
||||
parser.add_argument(
|
||||
'--gpu_num', type=int, default=1, help='nums of training gpus')
|
||||
args = parser.parse_args()
|
||||
args.separator = None if args.separator == "None" else args.separator
|
||||
return args
|
||||
|
||||
|
||||
def _is_number(num):
|
||||
pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$')
|
||||
result = pattern.match(num)
|
||||
if result:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
class TimeAnalyzer(object):
|
||||
def __init__(self, filename, keyword=None, separator=None, position=None, range="-1"):
|
||||
if filename is None:
|
||||
raise Exception("Please specify the filename!")
|
||||
|
||||
if keyword is None:
|
||||
raise Exception("Please specify the keyword!")
|
||||
|
||||
self.filename = filename
|
||||
self.keyword = keyword
|
||||
self.separator = separator
|
||||
self.position = position
|
||||
self.range = range
|
||||
self.records = None
|
||||
self._distil()
|
||||
|
||||
def _distil(self):
|
||||
self.records = []
|
||||
with open(self.filename, "r") as f_object:
|
||||
lines = f_object.readlines()
|
||||
for line in lines:
|
||||
if self.keyword not in line:
|
||||
continue
|
||||
try:
|
||||
result = None
|
||||
|
||||
# Distil the string from a line.
|
||||
line = line.strip()
|
||||
line_words = line.split(self.separator) if self.separator else line.split()
|
||||
if args.position:
|
||||
result = line_words[self.position]
|
||||
else:
|
||||
# Distil the string following the keyword.
|
||||
for i in range(len(line_words) - 1):
|
||||
if line_words[i] == self.keyword:
|
||||
result = line_words[i + 1]
|
||||
break
|
||||
|
||||
# Distil the result from the picked string.
|
||||
if not self.range:
|
||||
result = result[0:]
|
||||
elif _is_number(self.range):
|
||||
result = result[0: int(self.range)]
|
||||
else:
|
||||
result = result[int(self.range.split(":")[0]): int(self.range.split(":")[1])]
|
||||
self.records.append(float(result))
|
||||
except Exception as exc:
|
||||
print("line is: {}; separator={}; position={}".format(line, self.separator, self.position))
|
||||
|
||||
print("Extract {} records: separator={}; position={}".format(len(self.records), self.separator, self.position))
|
||||
|
||||
def _get_fps(self, mode, batch_size, gpu_num, avg_of_records, run_mode, unit=None):
|
||||
if mode == -1 and run_mode == 'sp':
|
||||
assert unit, "Please set the unit when mode is -1."
|
||||
fps = gpu_num * avg_of_records
|
||||
elif mode == -1 and run_mode == 'mp':
|
||||
assert unit, "Please set the unit when mode is -1."
|
||||
fps = gpu_num * avg_of_records #temporarily, not used now
|
||||
print("------------this is mp")
|
||||
elif mode == 0:
|
||||
# s/step -> samples/s
|
||||
fps = (batch_size * gpu_num) / avg_of_records
|
||||
unit = "samples/s"
|
||||
elif mode == 1:
|
||||
# steps/s -> steps/s
|
||||
fps = avg_of_records
|
||||
unit = "steps/s"
|
||||
elif mode == 2:
|
||||
# s/step -> steps/s
|
||||
fps = 1 / avg_of_records
|
||||
unit = "steps/s"
|
||||
elif mode == 3:
|
||||
# steps/s -> samples/s
|
||||
fps = batch_size * gpu_num * avg_of_records
|
||||
unit = "samples/s"
|
||||
elif mode == 4:
|
||||
# s/epoch -> s/epoch
|
||||
fps = avg_of_records
|
||||
unit = "s/epoch"
|
||||
else:
|
||||
ValueError("Unsupported analysis mode.")
|
||||
|
||||
return fps, unit
|
||||
|
||||
def analysis(self, batch_size, gpu_num=1, skip_steps=0, mode=-1, run_mode='sp', unit=None):
|
||||
if batch_size <= 0:
|
||||
print("base_batch_size should larger than 0.")
|
||||
return 0, ''
|
||||
|
||||
if len(self.records) <= skip_steps: # to address the condition which item of log equals to skip_steps
|
||||
print("no records")
|
||||
return 0, ''
|
||||
|
||||
sum_of_records = 0
|
||||
sum_of_records_skipped = 0
|
||||
skip_min = self.records[skip_steps]
|
||||
skip_max = self.records[skip_steps]
|
||||
|
||||
count = len(self.records)
|
||||
for i in range(count):
|
||||
sum_of_records += self.records[i]
|
||||
if i >= skip_steps:
|
||||
sum_of_records_skipped += self.records[i]
|
||||
if self.records[i] < skip_min:
|
||||
skip_min = self.records[i]
|
||||
if self.records[i] > skip_max:
|
||||
skip_max = self.records[i]
|
||||
|
||||
avg_of_records = sum_of_records / float(count)
|
||||
avg_of_records_skipped = sum_of_records_skipped / float(count - skip_steps)
|
||||
|
||||
fps, fps_unit = self._get_fps(mode, batch_size, gpu_num, avg_of_records, run_mode, unit)
|
||||
fps_skipped, _ = self._get_fps(mode, batch_size, gpu_num, avg_of_records_skipped, run_mode, unit)
|
||||
if mode == -1:
|
||||
print("average ips of %d steps, skip 0 step:" % count)
|
||||
print("\tAvg: %.3f %s" % (avg_of_records, fps_unit))
|
||||
print("\tFPS: %.3f %s" % (fps, fps_unit))
|
||||
if skip_steps > 0:
|
||||
print("average ips of %d steps, skip %d steps:" % (count, skip_steps))
|
||||
print("\tAvg: %.3f %s" % (avg_of_records_skipped, fps_unit))
|
||||
print("\tMin: %.3f %s" % (skip_min, fps_unit))
|
||||
print("\tMax: %.3f %s" % (skip_max, fps_unit))
|
||||
print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
|
||||
elif mode == 1 or mode == 3:
|
||||
print("average latency of %d steps, skip 0 step:" % count)
|
||||
print("\tAvg: %.3f steps/s" % avg_of_records)
|
||||
print("\tFPS: %.3f %s" % (fps, fps_unit))
|
||||
if skip_steps > 0:
|
||||
print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
|
||||
print("\tAvg: %.3f steps/s" % avg_of_records_skipped)
|
||||
print("\tMin: %.3f steps/s" % skip_min)
|
||||
print("\tMax: %.3f steps/s" % skip_max)
|
||||
print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
|
||||
elif mode == 0 or mode == 2:
|
||||
print("average latency of %d steps, skip 0 step:" % count)
|
||||
print("\tAvg: %.3f s/step" % avg_of_records)
|
||||
print("\tFPS: %.3f %s" % (fps, fps_unit))
|
||||
if skip_steps > 0:
|
||||
print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
|
||||
print("\tAvg: %.3f s/step" % avg_of_records_skipped)
|
||||
print("\tMin: %.3f s/step" % skip_min)
|
||||
print("\tMax: %.3f s/step" % skip_max)
|
||||
print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
|
||||
|
||||
return round(fps_skipped, 3), fps_unit
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
run_info = dict()
|
||||
run_info["log_file"] = args.filename
|
||||
run_info["model_name"] = args.model_name
|
||||
run_info["mission_name"] = args.mission_name
|
||||
run_info["direction_id"] = args.direction_id
|
||||
run_info["run_mode"] = args.run_mode
|
||||
run_info["index"] = args.index
|
||||
run_info["gpu_num"] = args.gpu_num
|
||||
run_info["FINAL_RESULT"] = 0
|
||||
run_info["JOB_FAIL_FLAG"] = 0
|
||||
|
||||
try:
|
||||
if args.index == 1:
|
||||
if args.gpu_num == 1:
|
||||
run_info["log_with_profiler"] = args.log_with_profiler
|
||||
run_info["profiler_path"] = args.profiler_path
|
||||
analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator, args.position, args.range)
|
||||
run_info["FINAL_RESULT"], run_info["UNIT"] = analyzer.analysis(
|
||||
batch_size=args.base_batch_size,
|
||||
gpu_num=args.gpu_num,
|
||||
skip_steps=args.skip_steps,
|
||||
mode=args.model_mode,
|
||||
run_mode=args.run_mode,
|
||||
unit=args.ips_unit)
|
||||
try:
|
||||
if int(os.getenv('job_fail_flag')) == 1 or int(run_info["FINAL_RESULT"]) == 0:
|
||||
run_info["JOB_FAIL_FLAG"] = 1
|
||||
except:
|
||||
pass
|
||||
elif args.index == 3:
|
||||
run_info["FINAL_RESULT"] = {}
|
||||
records_fo_total = TimeAnalyzer(args.filename, 'Framework overhead', None, 3, '').records
|
||||
records_fo_ratio = TimeAnalyzer(args.filename, 'Framework overhead', None, 5).records
|
||||
records_ct_total = TimeAnalyzer(args.filename, 'Computation time', None, 3, '').records
|
||||
records_gm_total = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 4, '').records
|
||||
records_gm_ratio = TimeAnalyzer(args.filename, 'GpuMemcpy Calls', None, 6).records
|
||||
records_gmas_total = TimeAnalyzer(args.filename, 'GpuMemcpyAsync Calls', None, 4, '').records
|
||||
records_gms_total = TimeAnalyzer(args.filename, 'GpuMemcpySync Calls', None, 4, '').records
|
||||
run_info["FINAL_RESULT"]["Framework_Total"] = records_fo_total[0] if records_fo_total else 0
|
||||
run_info["FINAL_RESULT"]["Framework_Ratio"] = records_fo_ratio[0] if records_fo_ratio else 0
|
||||
run_info["FINAL_RESULT"]["ComputationTime_Total"] = records_ct_total[0] if records_ct_total else 0
|
||||
run_info["FINAL_RESULT"]["GpuMemcpy_Total"] = records_gm_total[0] if records_gm_total else 0
|
||||
run_info["FINAL_RESULT"]["GpuMemcpy_Ratio"] = records_gm_ratio[0] if records_gm_ratio else 0
|
||||
run_info["FINAL_RESULT"]["GpuMemcpyAsync_Total"] = records_gmas_total[0] if records_gmas_total else 0
|
||||
run_info["FINAL_RESULT"]["GpuMemcpySync_Total"] = records_gms_total[0] if records_gms_total else 0
|
||||
else:
|
||||
print("Not support!")
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
print("{}".format(json.dumps(run_info))) # it's required, for the log file path insert to the database
|
||||
|
|
@ -0,0 +1,34 @@
|
|||
|
||||
# PaddleOCR DB/EAST 算法训练benchmark测试
|
||||
|
||||
PaddleOCR/benchmark目录下的文件用于获取并分析训练日志。
|
||||
训练采用icdar2015数据集,包括1000张训练图像和500张测试图像。模型配置采用resnet18_vd作为backbone,分别训练batch_size=8和batch_size=16的情况。
|
||||
|
||||
## 运行训练benchmark
|
||||
|
||||
benchmark/run_det.sh 中包含了三个过程:
|
||||
- 安装依赖
|
||||
- 下载数据
|
||||
- 执行训练
|
||||
- 日志分析获取IPS
|
||||
|
||||
在执行训练部分,会执行单机单卡(默认0号卡)单机多卡训练,并分别执行batch_size=8和batch_size=16的情况。所以执行完后,每种模型会得到4个日志文件。
|
||||
|
||||
run_det.sh 执行方式如下:
|
||||
|
||||
```
|
||||
# cd PaddleOCR/
|
||||
bash benchmark/run_det.sh
|
||||
```
|
||||
|
||||
以DB为例,将得到四个日志文件,如下:
|
||||
```
|
||||
det_res18_db_v2.0_sp_bs16_fp32_1
|
||||
det_res18_db_v2.0_sp_bs8_fp32_1
|
||||
det_res18_db_v2.0_mp_bs16_fp32_1
|
||||
det_res18_db_v2.0_mp_bs8_fp32_1
|
||||
```
|
||||
|
||||
|
||||
|
||||
|
|
@ -20,9 +20,7 @@ function _train(){
|
|||
echo "Train on ${num_gpu_devices} GPUs"
|
||||
echo "current CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES, gpus=$num_gpu_devices, batch_size=$batch_size"
|
||||
|
||||
train_cmd="-c configs/det/${model_name}.yml
|
||||
-o Train.loader.batch_size_per_card=${batch_size}
|
||||
-o Global.epoch_num=${max_iter} "
|
||||
train_cmd="-c configs/det/${model_name}.yml -o Train.loader.batch_size_per_card=${batch_size} Global.epoch_num=${max_iter} "
|
||||
case ${run_mode} in
|
||||
sp)
|
||||
train_cmd="python3.7 tools/train.py "${train_cmd}""
|
||||
|
@ -47,6 +45,10 @@ function _train(){
|
|||
rm ${log_file}
|
||||
cp mylog/workerlog.0 ${log_file}
|
||||
fi
|
||||
|
||||
# run log analysis
|
||||
analysis_cmd="python3.7 benchmark/analysis.py --filename ${log_file} --mission_name ${model_name} --run_mode ${mode} --direction_id 0 --keyword 'ips:' --base_batch_size ${batch_szie} --skip_steps 1 --gpu_num ${num_gpu_devices} --index 1 --model_mode=-1 --ips_unit=samples/sec"
|
||||
eval $analysis_cmd
|
||||
}
|
||||
|
||||
_set_params $@
|
||||
|
|
|
@ -1,26 +1,25 @@
|
|||
# 提供可稳定复现性能的脚本,默认在标准docker环境内py37执行: paddlepaddle/paddle:latest-gpu-cuda10.1-cudnn7 paddle=2.1.2 py=37
|
||||
# 执行目录:需说明
|
||||
cd PaddleOCR
|
||||
# 执行目录: ./PaddleOCR
|
||||
# 1 安装该模型需要的依赖 (如需开启优化策略请注明)
|
||||
python3.7 -m pip install -r requirements.txt
|
||||
# 2 拷贝该模型需要数据、预训练模型
|
||||
wget -p ./tain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../
|
||||
wget -p ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
|
||||
wget -c -p ./tain_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar && cd train_data && tar xf icdar2015.tar && cd ../
|
||||
wget -c -p ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_pretrained.pdparams
|
||||
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
|
||||
|
||||
model_mode_list=(det_mv3_db det_r50_vd_east)
|
||||
model_mode_list=(det_res18_db_v2.0 det_r50_vd_east)
|
||||
fp_item_list=(fp32)
|
||||
bs_list=(256 128)
|
||||
bs_list=(8 16)
|
||||
for model_mode in ${model_mode_list[@]}; do
|
||||
for fp_item in ${fp_item_list[@]}; do
|
||||
for bs_item in ${bs_list[@]}; do
|
||||
echo "index is speed, 1gpus, begin, ${model_name}"
|
||||
run_mode=sp
|
||||
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
|
||||
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
|
||||
sleep 60
|
||||
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
|
||||
run_mode=mp
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark_det.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
|
||||
sleep 60
|
||||
done
|
||||
done
|
||||
|
|
|
@ -0,0 +1,131 @@
|
|||
Global:
|
||||
use_gpu: true
|
||||
epoch_num: 1200
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 2
|
||||
save_model_dir: ./output/ch_db_res18/
|
||||
save_epoch_step: 1200
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [3000, 2000]
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_en/img_10.jpg
|
||||
save_res_path: ./output/det_db/predicts_db.txt
|
||||
|
||||
Architecture:
|
||||
model_type: det
|
||||
algorithm: DB
|
||||
Transform:
|
||||
Backbone:
|
||||
name: ResNet
|
||||
layers: 18
|
||||
disable_se: True
|
||||
Neck:
|
||||
name: DBFPN
|
||||
out_channels: 256
|
||||
Head:
|
||||
name: DBHead
|
||||
k: 50
|
||||
|
||||
Loss:
|
||||
name: DBLoss
|
||||
balance_loss: true
|
||||
main_loss_type: DiceLoss
|
||||
alpha: 5
|
||||
beta: 10
|
||||
ohem_ratio: 3
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.999
|
||||
lr:
|
||||
name: Cosine
|
||||
learning_rate: 0.001
|
||||
warmup_epoch: 2
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0
|
||||
|
||||
PostProcess:
|
||||
name: DBPostProcess
|
||||
thresh: 0.3
|
||||
box_thresh: 0.6
|
||||
max_candidates: 1000
|
||||
unclip_ratio: 1.5
|
||||
|
||||
Metric:
|
||||
name: DetMetric
|
||||
main_indicator: hmean
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/icdar2015/text_localization/
|
||||
label_file_list:
|
||||
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
|
||||
ratio_list: [1.0]
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- IaaAugment:
|
||||
augmenter_args:
|
||||
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
|
||||
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
|
||||
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
|
||||
- EastRandomCropData:
|
||||
size: [960, 960]
|
||||
max_tries: 50
|
||||
keep_ratio: true
|
||||
- MakeBorderMap:
|
||||
shrink_ratio: 0.4
|
||||
thresh_min: 0.3
|
||||
thresh_max: 0.7
|
||||
- MakeShrinkMap:
|
||||
shrink_ratio: 0.4
|
||||
min_text_size: 8
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: 'hwc'
|
||||
- ToCHWImage:
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
|
||||
loader:
|
||||
shuffle: True
|
||||
drop_last: False
|
||||
batch_size_per_card: 8
|
||||
num_workers: 4
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: SimpleDataSet
|
||||
data_dir: ./train_data/icdar2015/text_localization/
|
||||
label_file_list:
|
||||
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
|
||||
transforms:
|
||||
- DecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- DetLabelEncode: # Class handling label
|
||||
- DetResizeForTest:
|
||||
# image_shape: [736, 1280]
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: 'hwc'
|
||||
- ToCHWImage:
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 1 # must be 1
|
||||
num_workers: 2
|
|
@ -0,0 +1,110 @@
|
|||
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import sys
|
||||
import paddle
|
||||
|
||||
# A global variable to record the number of calling times for profiler
|
||||
# functions. It is used to specify the tracing range of training steps.
|
||||
_profiler_step_id = 0
|
||||
|
||||
# A global variable to avoid parsing from string every time.
|
||||
_profiler_options = None
|
||||
|
||||
|
||||
class ProfilerOptions(object):
|
||||
'''
|
||||
Use a string to initialize a ProfilerOptions.
|
||||
The string should be in the format: "key1=value1;key2=value;key3=value3".
|
||||
For example:
|
||||
"profile_path=model.profile"
|
||||
"batch_range=[50, 60]; profile_path=model.profile"
|
||||
"batch_range=[50, 60]; tracer_option=OpDetail; profile_path=model.profile"
|
||||
ProfilerOptions supports following key-value pair:
|
||||
batch_range - a integer list, e.g. [100, 110].
|
||||
state - a string, the optional values are 'CPU', 'GPU' or 'All'.
|
||||
sorted_key - a string, the optional values are 'calls', 'total',
|
||||
'max', 'min' or 'ave.
|
||||
tracer_option - a string, the optional values are 'Default', 'OpDetail',
|
||||
'AllOpDetail'.
|
||||
profile_path - a string, the path to save the serialized profile data,
|
||||
which can be used to generate a timeline.
|
||||
exit_on_finished - a boolean.
|
||||
'''
|
||||
|
||||
def __init__(self, options_str):
|
||||
assert isinstance(options_str, str)
|
||||
|
||||
self._options = {
|
||||
'batch_range': [10, 20],
|
||||
'state': 'All',
|
||||
'sorted_key': 'total',
|
||||
'tracer_option': 'Default',
|
||||
'profile_path': '/tmp/profile',
|
||||
'exit_on_finished': True
|
||||
}
|
||||
self._parse_from_string(options_str)
|
||||
|
||||
def _parse_from_string(self, options_str):
|
||||
for kv in options_str.replace(' ', '').split(';'):
|
||||
key, value = kv.split('=')
|
||||
if key == 'batch_range':
|
||||
value_list = value.replace('[', '').replace(']', '').split(',')
|
||||
value_list = list(map(int, value_list))
|
||||
if len(value_list) >= 2 and value_list[0] >= 0 and value_list[
|
||||
1] > value_list[0]:
|
||||
self._options[key] = value_list
|
||||
elif key == 'exit_on_finished':
|
||||
self._options[key] = value.lower() in ("yes", "true", "t", "1")
|
||||
elif key in [
|
||||
'state', 'sorted_key', 'tracer_option', 'profile_path'
|
||||
]:
|
||||
self._options[key] = value
|
||||
|
||||
def __getitem__(self, name):
|
||||
if self._options.get(name, None) is None:
|
||||
raise ValueError(
|
||||
"ProfilerOptions does not have an option named %s." % name)
|
||||
return self._options[name]
|
||||
|
||||
|
||||
def add_profiler_step(options_str=None):
|
||||
'''
|
||||
Enable the operator-level timing using PaddlePaddle's profiler.
|
||||
The profiler uses a independent variable to count the profiler steps.
|
||||
One call of this function is treated as a profiler step.
|
||||
|
||||
Args:
|
||||
profiler_options - a string to initialize the ProfilerOptions.
|
||||
Default is None, and the profiler is disabled.
|
||||
'''
|
||||
if options_str is None:
|
||||
return
|
||||
|
||||
global _profiler_step_id
|
||||
global _profiler_options
|
||||
|
||||
if _profiler_options is None:
|
||||
_profiler_options = ProfilerOptions(options_str)
|
||||
|
||||
if _profiler_step_id == _profiler_options['batch_range'][0]:
|
||||
paddle.utils.profiler.start_profiler(
|
||||
_profiler_options['state'], _profiler_options['tracer_option'])
|
||||
elif _profiler_step_id == _profiler_options['batch_range'][1]:
|
||||
paddle.utils.profiler.stop_profiler(_profiler_options['sorted_key'],
|
||||
_profiler_options['profile_path'])
|
||||
if _profiler_options['exit_on_finished']:
|
||||
sys.exit(0)
|
||||
|
||||
_profiler_step_id += 1
|
|
@ -31,6 +31,7 @@ from ppocr.utils.stats import TrainingStats
|
|||
from ppocr.utils.save_load import save_model
|
||||
from ppocr.utils.utility import print_dict
|
||||
from ppocr.utils.logging import get_logger
|
||||
from ppocr.utils import profiler
|
||||
from ppocr.data import build_dataloader
|
||||
import numpy as np
|
||||
|
||||
|
@ -42,6 +43,13 @@ class ArgsParser(ArgumentParser):
|
|||
self.add_argument("-c", "--config", help="configuration file to use")
|
||||
self.add_argument(
|
||||
"-o", "--opt", nargs='+', help="set configuration options")
|
||||
self.add_argument(
|
||||
'-p',
|
||||
'--profiler_options',
|
||||
type=str,
|
||||
default=None,
|
||||
help='The option of profiler, which should be in format \"key1=value1;key2=value2;key3=value3\".'
|
||||
)
|
||||
|
||||
def parse_args(self, argv=None):
|
||||
args = super(ArgsParser, self).parse_args(argv)
|
||||
|
@ -158,6 +166,7 @@ def train(config,
|
|||
epoch_num = config['Global']['epoch_num']
|
||||
print_batch_step = config['Global']['print_batch_step']
|
||||
eval_batch_step = config['Global']['eval_batch_step']
|
||||
profiler_options = config['profiler_options']
|
||||
|
||||
global_step = 0
|
||||
if 'global_step' in pre_best_model_dict:
|
||||
|
@ -209,6 +218,7 @@ def train(config,
|
|||
max_iter = len(train_dataloader) - 1 if platform.system(
|
||||
) == "Windows" else len(train_dataloader)
|
||||
for idx, batch in enumerate(train_dataloader):
|
||||
profiler.add_profiler_step(profiler_options)
|
||||
train_reader_cost += time.time() - batch_start
|
||||
if idx >= max_iter:
|
||||
break
|
||||
|
@ -391,8 +401,11 @@ def eval(model,
|
|||
|
||||
def preprocess(is_train=False):
|
||||
FLAGS = ArgsParser().parse_args()
|
||||
profiler_options = FLAGS.profiler_options
|
||||
config = load_config(FLAGS.config)
|
||||
merge_config(FLAGS.opt)
|
||||
profile_dic = {"profiler_options": FLAGS.profiler_options}
|
||||
merge_config(profile_dic)
|
||||
|
||||
if is_train:
|
||||
# save_config
|
||||
|
|
Loading…
Reference in New Issue