Merge pull request #3983 from Evezerest/2.3

Fix typo
This commit is contained in:
Evezerest 2021-09-09 09:38:51 +08:00 committed by GitHub
commit af413d6b2c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 6 additions and 6 deletions

View File

@ -102,7 +102,7 @@ For a new language request, please refer to [Guideline for new language_requests
- PP-OCR Industry Landing: from Training to Deployment
- [PP-OCR Model Zoo](./doc/doc_en/models_en.md)
- [PP-OCR Model Download](./doc/doc_en/models_list_en.md)
- [Python Inference for PP-OCR Model Library](./doc/doc_en/inference_ppocr_en.md)
- [Python Inference for PP-OCR Model Zoo](./doc/doc_en/inference_ppocr_en.md)
- [PP-OCR Training](./doc/doc_en/training_en.md)
- [Text Detection](./doc/doc_en/detection_en.md)
- [Text Recognition](./doc/doc_en/recognition_en.md)

View File

@ -2,7 +2,7 @@
# PP-OCR模型库
PP-OCR模型一节主要补充一些OCR模型的基本概念以及如何快速运用PP-OCR模型库中的模型。
本节包含两个部分,首先在[PP-OCR模型下载](./models_list.md)中解释PP-OCR模型的类型概念并提供所有模型的下载链接。然后在[PP-OCR模型库Python推理](./inference_ppocr.md)中介绍PP-OCR模型库的使用方法可以通过Python推理引擎快速利用丰富的模型库模型获得测试结果。
本节包含两个部分,首先在[PP-OCR模型下载](./models_list.md)中解释PP-OCR模型的类型概念并提供所有模型的下载链接。然后在[基于Python引擎的PP-OCR模型库推理](./inference_ppocr.md)中介绍PP-OCR模型库的使用方法可以通过Python推理引擎快速利用丰富的模型库模型获得测试结果。
------

View File

@ -1,5 +1,5 @@
# Python Inference for PP-OCR Model Library
# Python Inference for PP-OCR Model Zoo
This article introduces the use of the Python inference engine for the PP-OCR model library. The content is in order of text detection, text recognition, direction classifier and the prediction method of the three in series on the CPU and GPU.

View File

@ -1,14 +1,14 @@
# PP-OCR Model Zoo
The PP-OCR model zoo section explains some basic concepts of the OCR model and how to quickly use the models in the PP-OCR model library.
This section contains two parts. Firstly, [PP-OCR Model Download](. /models_list_en.md) explains the concept of PP-OCR model types and provides links to download all models. The next [Python Inference for PP-OCR Model Library](. /inference_ppocr_en.md) is an introduction to the use of the PP-OCR model library, which can quickly utilize the rich model library models to obtain test results through the Python inference engine.
This section contains two parts. Firstly, [PP-OCR Model Download](./models_list_en.md) explains the concept of PP-OCR model types and provides links to download all models. The next [Python Inference for PP-OCR Model Zoo](./inference_ppocr_en.md) is an introduction to the use of the PP-OCR model library, which can quickly utilize the rich model library models to obtain test results through the Python inference engine.
------
Let's first understand some basic concepts.
- [INTRODUCTION ABOUT OCR](#introduction-about-ocr)
* [BASIC CONCEPTS OF OCR DETECTION MODEL](#basic-concepts-of-ocr-detection-model)
* [Basic concepts of OCR detection model](#basic-concepts-of-ocr-detection-model)
* [Basic concepts of OCR recognition model](#basic-concepts-of-ocr-recognition-model)
* [PP-OCR model](#pp-ocr-model)
* [And a table of contents](#and-a-table-of-contents)
@ -24,7 +24,7 @@ OCR (Optical Character Recognition, Optical Character Recognition) is currently
OCR text recognition generally includes two parts, text detection and text recognition. The text detection module first uses detection algorithms to detect text lines in the image. And then the recognition algorithm to identify the specific text in the text line.
### 1.1 BASIC CONCEPTS OF OCR DETECTION MODEL
### 1.1 Basic concepts of OCR detection model
Text detection can locate the text area in the image, and then usually mark the word or text line in the form of a bounding box. Traditional text detection algorithms mostly extract features manually, which are characterized by fast speed and good effect in simple scenes, but the effect will be greatly reduced when faced with natural scenes. Currently, deep learning methods are mostly used.