remove det_mv3_db_v1.1.yml & add code annotation

This commit is contained in:
MissPenguin 2020-09-19 16:23:17 +08:00
parent 2cdf7a666e
commit b063599418
4 changed files with 22 additions and 55 deletions

View File

@ -24,6 +24,7 @@ Backbone:
function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3 function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
scale: 0.5 scale: 0.5
model_name: large model_name: large
disable_se: true
Head: Head:
function: ppocr.modeling.heads.det_db_head,DBHead function: ppocr.modeling.heads.det_db_head,DBHead

View File

@ -1,55 +0,0 @@
Global:
algorithm: DB
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/det_db/
save_epoch_step: 200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [4000, 5000]
train_batch_size_per_card: 16
test_batch_size_per_card: 16
image_shape: [3, 640, 640]
reader_yml: ./configs/det/det_db_icdar15_reader.yml
pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
checkpoints:
save_res_path: ./output/det_db/predicts_db.txt
save_inference_dir:
Architecture:
function: ppocr.modeling.architectures.det_model,DetModel
Backbone:
function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
scale: 0.5
model_name: large
disable_se: true
Head:
function: ppocr.modeling.heads.det_db_head,DBHead
model_name: large
k: 50
inner_channels: 96
out_channels: 2
Loss:
function: ppocr.modeling.losses.det_db_loss,DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
function: ppocr.optimizer,AdamDecay
base_lr: 0.001
beta1: 0.9
beta2: 0.999
PostProcess:
function: ppocr.postprocess.db_postprocess,DBPostProcess
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5

View File

@ -204,6 +204,15 @@ def build(config, main_prog, startup_prog, mode):
def build_export(config, main_prog, startup_prog): def build_export(config, main_prog, startup_prog):
""" """
Build input and output for exporting a checkpoints model to an inference model
Args:
config(dict): config
main_prog(): main program
startup_prog(): startup program
Returns:
feeded_var_names(list[str]): var names of input for exported inference model
target_vars(list[Variable]): output vars for exported inference model
fetches_var_name: dict of checkpoints model outputs(included loss and measures)
""" """
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
with fluid.unique_name.guard(): with fluid.unique_name.guard():
@ -246,6 +255,9 @@ def train_eval_det_run(config,
train_info_dict, train_info_dict,
eval_info_dict, eval_info_dict,
is_pruning=False): is_pruning=False):
'''
main program of evaluation for detection
'''
train_batch_id = 0 train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window'] log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num'] epoch_num = config['Global']['epoch_num']
@ -337,6 +349,9 @@ def train_eval_det_run(config,
def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict): def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
'''
main program of evaluation for recognition
'''
train_batch_id = 0 train_batch_id = 0
log_smooth_window = config['Global']['log_smooth_window'] log_smooth_window = config['Global']['log_smooth_window']
epoch_num = config['Global']['epoch_num'] epoch_num = config['Global']['epoch_num']
@ -513,6 +528,7 @@ def train_eval_cls_run(config, exe, train_info_dict, eval_info_dict):
def preprocess(): def preprocess():
# load config from yml file
FLAGS = ArgsParser().parse_args() FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config) config = load_config(FLAGS.config)
merge_config(FLAGS.opt) merge_config(FLAGS.opt)
@ -522,6 +538,7 @@ def preprocess():
use_gpu = config['Global']['use_gpu'] use_gpu = config['Global']['use_gpu']
check_gpu(use_gpu) check_gpu(use_gpu)
# check whether the set algorithm belongs to the supported algorithm list
alg = config['Global']['algorithm'] alg = config['Global']['algorithm']
assert alg in [ assert alg in [
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS' 'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS'

View File

@ -46,6 +46,7 @@ from paddle.fluid.contrib.model_stat import summary
def main(): def main():
# build train program
train_build_outputs = program.build( train_build_outputs = program.build(
config, train_program, startup_program, mode='train') config, train_program, startup_program, mode='train')
train_loader = train_build_outputs[0] train_loader = train_build_outputs[0]
@ -54,6 +55,7 @@ def main():
train_opt_loss_name = train_build_outputs[3] train_opt_loss_name = train_build_outputs[3]
model_average = train_build_outputs[-1] model_average = train_build_outputs[-1]
# build eval program
eval_program = fluid.Program() eval_program = fluid.Program()
eval_build_outputs = program.build( eval_build_outputs = program.build(
config, eval_program, startup_program, mode='eval') config, eval_program, startup_program, mode='eval')
@ -61,9 +63,11 @@ def main():
eval_fetch_varname_list = eval_build_outputs[2] eval_fetch_varname_list = eval_build_outputs[2]
eval_program = eval_program.clone(for_test=True) eval_program = eval_program.clone(for_test=True)
# initialize train reader
train_reader = reader_main(config=config, mode="train") train_reader = reader_main(config=config, mode="train")
train_loader.set_sample_list_generator(train_reader, places=place) train_loader.set_sample_list_generator(train_reader, places=place)
# initialize eval reader
eval_reader = reader_main(config=config, mode="eval") eval_reader = reader_main(config=config, mode="eval")
exe = fluid.Executor(place) exe = fluid.Executor(place)