Merge remote-tracking branch 'origin/dygraph' into dygraph

# Conflicts:
#	PPOCRLabel/libs/resources.py
This commit is contained in:
Alchemist_W 2021-07-21 11:52:58 +08:00
commit b063c417ea
34 changed files with 7767 additions and 6863 deletions

View File

@ -401,6 +401,7 @@ class MainWindow(QMainWindow, WindowMixin):
help = action(getStr('tutorial'), self.showTutorialDialog, None, 'help', getStr('tutorialDetail'))
showInfo = action(getStr('info'), self.showInfoDialog, None, 'help', getStr('info'))
showSteps = action(getStr('steps'), self.showStepsDialog, None, 'help', getStr('steps'))
showKeys = action(getStr('keys'), self.showKeysDialog, None, 'help', getStr('keys'))
zoom = QWidgetAction(self)
zoom.setDefaultWidget(self.zoomWidget)
@ -568,7 +569,7 @@ class MainWindow(QMainWindow, WindowMixin):
addActions(self.menus.file,
(opendir, open_dataset_dir, None, saveLabel, saveRec, self.autoSaveOption, None, resetAll, deleteImg, quit))
addActions(self.menus.help, (showSteps, showInfo))
addActions(self.menus.help, (showKeys,showSteps, showInfo))
addActions(self.menus.view, (
self.displayLabelOption, self.labelDialogOption,
None,
@ -763,6 +764,10 @@ class MainWindow(QMainWindow, WindowMixin):
msg = stepsInfo(self.lang)
QMessageBox.information(self, u'Information', msg)
def showKeysDialog(self):
msg = keysInfo(self.lang)
QMessageBox.information(self, u'Information', msg)
def createShape(self):
assert self.beginner()
self.canvas.setEditing(False)

File diff suppressed because it is too large Load Diff

View File

@ -174,6 +174,7 @@ def stepsInfo(lang='en'):
"10. 标注结果:关闭应用程序或切换文件路径后,手动保存过的标签将会被存放在所打开图片文件夹下的" \
"*Label.txt*中。在菜单栏点击 “PaddleOCR” - 保存识别结果后,会将此类图片的识别训练数据保存在*crop_img*文件夹下," \
"识别标签保存在*rec_gt.txt*中。\n"
else:
msg = "1. Build and launch using the instructions above.\n" \
"2. Click 'Open Dir' in Menu/File to select the folder of the picture.\n"\
@ -188,4 +189,56 @@ def stepsInfo(lang='en'):
"9. Click 'Delete Image' and the image will be deleted to the recycle bin.\n"\
"10. Labeling result: After closing the application or switching the file path, the manually saved label will be stored in *Label.txt* under the opened picture folder.\n"\
" Click PaddleOCR-Save Recognition Results in the menu bar, the recognition training data of such pictures will be saved in the *crop_img* folder, and the recognition label will be saved in *rec_gt.txt*.\n"
return msg
def keysInfo(lang='en'):
if lang == 'ch':
msg = "快捷键\t\t\t说明\n" \
"———————————————————————\n"\
"Ctrl + shift + R\t\t对当前图片的所有标记重新识别\n" \
"W\t\t\t新建矩形框\n" \
"Q\t\t\t新建四点框\n" \
"Ctrl + E\t\t编辑所选框标签\n" \
"Ctrl + R\t\t重新识别所选标记\n" \
"Ctrl + C\t\t复制并粘贴选中的标记框\n" \
"Ctrl + 鼠标左键\t\t多选标记框\n" \
"Backspace\t\t删除所选框\n" \
"Ctrl + V\t\t确认本张图片标记\n" \
"Ctrl + Shift + d\t删除本张图片\n" \
"D\t\t\t下一张图片\n" \
"A\t\t\t上一张图片\n" \
"Ctrl++\t\t\t缩小\n" \
"Ctrl--\t\t\t放大\n" \
"↑→↓←\t\t\t移动标记框\n" \
"———————————————————————\n" \
"Mac用户Command键替换上述Ctrl键"
else:
msg = "Shortcut Keys\t\tDescription\n" \
"———————————————————————\n" \
"Ctrl + shift + R\t\tRe-recognize all the labels\n" \
"\t\t\tof the current image\n" \
"\n"\
"W\t\t\tCreate a rect box\n" \
"Q\t\t\tCreate a four-points box\n" \
"Ctrl + E\t\tEdit label of the selected box\n" \
"Ctrl + R\t\tRe-recognize the selected box\n" \
"Ctrl + C\t\tCopy and paste the selected\n" \
"\t\t\tbox\n" \
"\n"\
"Ctrl + Left Mouse\tMulti select the label\n" \
"Button\t\t\tbox\n" \
"\n"\
"Backspace\t\tDelete the selected box\n" \
"Ctrl + V\t\tCheck image\n" \
"Ctrl + Shift + d\tDelete image\n" \
"D\t\t\tNext image\n" \
"A\t\t\tPrevious image\n" \
"Ctrl++\t\t\tZoom in\n" \
"Ctrl--\t\t\tZoom out\n" \
"↑→↓←\t\t\tMove selected box" \
"———————————————————————\n" \
"Notice:For Mac users, use the 'Command' key instead of the 'Ctrl' key"
return msg

View File

@ -90,6 +90,7 @@ saveRec=保存识别结果
tempLabel=待识别
nullLabel=无法识别
steps=操作步骤
keys=快捷键
choseModelLg=选择模型语言
cancel=取消
ok=确认

View File

@ -90,6 +90,7 @@ saveRec=Save Recognition Result
tempLabel=TEMPORARY
nullLabel=NULL
steps=Steps
keys=Shortcut Keys
choseModelLg=Choose Model Language
cancel=Cancel
ok=OK

View File

@ -0,0 +1,202 @@
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/ch_db_mv3/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
name: DistillationModel
algorithm: Distillation
Models:
Student:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 96
Head:
name: DBHead
k: 50
Student2:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 96
Head:
name: DBHead
k: 50
Teacher:
pretrained: ./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy
freeze_params: true
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 18
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: CombinedLoss
loss_config_list:
- DistillationDilaDBLoss:
weight: 1.0
model_name_pairs:
- ["Student", "Teacher"]
- ["Student2", "Teacher"]
key: maps
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
- DistillationDMLLoss:
model_name_pairs:
- ["Student", "Student2"]
maps_name: "thrink_maps"
weight: 1.0
# act: None
model_name_pairs: ["Student", "Student2"]
key: maps
- DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Student2"]
# key: maps
# name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DistillationDBPostProcess
model_name: ["Student", "Student2", "Teacher"]
# key: maps
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DistillationMetric
base_metric_name: DetMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

View File

@ -0,0 +1,174 @@
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/ch_db_mv3/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
name: DistillationModel
algorithm: Distillation
Models:
Student:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 96
Head:
name: DBHead
k: 50
Teacher:
pretrained: ./pretrain_models/ch_ppocr_server_v2.0_det_train/best_accuracy
freeze_params: true
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: ResNet
layers: 18
Neck:
name: DBFPN
out_channels: 256
Head:
name: DBHead
k: 50
Loss:
name: CombinedLoss
loss_config_list:
- DistillationDilaDBLoss:
weight: 1.0
model_name_pairs:
- ["Student", "Teacher"]
key: maps
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
- DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Teacher"]
# key: maps
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DistillationDBPostProcess
model_name: ["Student", "Student2"]
key: head_out
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DistillationMetric
base_metric_name: DetMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

View File

@ -0,0 +1,176 @@
Global:
use_gpu: true
epoch_num: 1200
log_smooth_window: 20
print_batch_step: 2
save_model_dir: ./output/ch_db_mv3/
save_epoch_step: 1200
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [3000, 2000]
cal_metric_during_train: False
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
checkpoints:
save_inference_dir:
use_visualdl: False
infer_img: doc/imgs_en/img_10.jpg
save_res_path: ./output/det_db/predicts_db.txt
Architecture:
name: DistillationModel
algorithm: Distillation
Models:
Student:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 96
Head:
name: DBHead
k: 50
Student2:
pretrained: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
freeze_params: false
return_all_feats: false
model_type: det
algorithm: DB
Transform:
Backbone:
name: MobileNetV3
scale: 0.5
model_name: large
disable_se: True
Neck:
name: DBFPN
out_channels: 96
Head:
name: DBHead
k: 50
Loss:
name: CombinedLoss
loss_config_list:
- DistillationDMLLoss:
model_name_pairs:
- ["Student", "Student2"]
maps_name: "thrink_maps"
weight: 1.0
act: "softmax"
model_name_pairs: ["Student", "Student2"]
key: maps
- DistillationDBLoss:
weight: 1.0
model_name_list: ["Student", "Student2"]
# key: maps
name: DBLoss
balance_loss: true
main_loss_type: DiceLoss
alpha: 5
beta: 10
ohem_ratio: 3
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 2
regularizer:
name: 'L2'
factor: 0
PostProcess:
name: DistillationDBPostProcess
model_name: ["Student", "Student2"]
key: head_out
thresh: 0.3
box_thresh: 0.6
max_candidates: 1000
unclip_ratio: 1.5
Metric:
name: DistillationMetric
base_metric_name: DetMetric
main_indicator: hmean
key: "Student"
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- IaaAugment:
augmenter_args:
- { 'type': Fliplr, 'args': { 'p': 0.5 } }
- { 'type': Affine, 'args': { 'rotate': [-10, 10] } }
- { 'type': Resize, 'args': { 'size': [0.5, 3] } }
- EastRandomCropData:
size: [960, 960]
max_tries: 50
keep_ratio: true
- MakeBorderMap:
shrink_ratio: 0.4
thresh_min: 0.3
thresh_max: 0.7
- MakeShrinkMap:
shrink_ratio: 0.4
min_text_size: 8
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'threshold_map', 'threshold_mask', 'shrink_map', 'shrink_mask'] # the order of the dataloader list
loader:
shuffle: True
drop_last: False
batch_size_per_card: 8
num_workers: 4
Eval:
dataset:
name: SimpleDataSet
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/test_icdar2015_label.txt
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- DetLabelEncode: # Class handling label
- DetResizeForTest:
# image_shape: [736, 1280]
- NormalizeImage:
scale: 1./255.
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
loader:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 2

View File

@ -13,7 +13,6 @@ SET(TENSORRT_DIR "" CACHE PATH "Compile demo with TensorRT")
set(DEMO_NAME "ocr_system")
macro(safe_set_static_flag)
foreach(flag_var
CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_DEBUG CMAKE_CXX_FLAGS_RELEASE

View File

@ -668,7 +668,7 @@ void DisposeOutPts(OutPt *&pp) {
//------------------------------------------------------------------------------
inline void InitEdge(TEdge *e, TEdge *eNext, TEdge *ePrev, const IntPoint &Pt) {
std::memset(e, 0, sizeof(TEdge));
std::memset(e, int(0), sizeof(TEdge));
e->Next = eNext;
e->Prev = ePrev;
e->Curr = Pt;
@ -1895,17 +1895,17 @@ void Clipper::InsertLocalMinimaIntoAEL(const cInt botY) {
TEdge *rb = lm->RightBound;
OutPt *Op1 = 0;
if (!lb) {
if (!lb || !rb) {
// nb: don't insert LB into either AEL or SEL
InsertEdgeIntoAEL(rb, 0);
SetWindingCount(*rb);
if (IsContributing(*rb))
Op1 = AddOutPt(rb, rb->Bot);
} else if (!rb) {
InsertEdgeIntoAEL(lb, 0);
SetWindingCount(*lb);
if (IsContributing(*lb))
Op1 = AddOutPt(lb, lb->Bot);
//} else if (!rb) {
// InsertEdgeIntoAEL(lb, 0);
// SetWindingCount(*lb);
// if (IsContributing(*lb))
// Op1 = AddOutPt(lb, lb->Bot);
InsertScanbeam(lb->Top.Y);
} else {
InsertEdgeIntoAEL(lb, 0);
@ -2547,13 +2547,13 @@ void Clipper::ProcessHorizontal(TEdge *horzEdge) {
if (dir == dLeftToRight) {
maxIt = m_Maxima.begin();
while (maxIt != m_Maxima.end() && *maxIt <= horzEdge->Bot.X)
maxIt++;
++maxIt;
if (maxIt != m_Maxima.end() && *maxIt >= eLastHorz->Top.X)
maxIt = m_Maxima.end();
} else {
maxRit = m_Maxima.rbegin();
while (maxRit != m_Maxima.rend() && *maxRit > horzEdge->Bot.X)
maxRit++;
++maxRit;
if (maxRit != m_Maxima.rend() && *maxRit <= eLastHorz->Top.X)
maxRit = m_Maxima.rend();
}
@ -2576,13 +2576,13 @@ void Clipper::ProcessHorizontal(TEdge *horzEdge) {
while (maxIt != m_Maxima.end() && *maxIt < e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxIt, horzEdge->Bot.Y));
maxIt++;
++maxIt;
}
} else {
while (maxRit != m_Maxima.rend() && *maxRit > e->Curr.X) {
if (horzEdge->OutIdx >= 0 && !IsOpen)
AddOutPt(horzEdge, IntPoint(*maxRit, horzEdge->Bot.Y));
maxRit++;
++maxRit;
}
}
};

View File

@ -21,10 +21,10 @@ std::vector<std::string> OCRConfig::split(const std::string &str,
std::vector<std::string> res;
if ("" == str)
return res;
char *strs = new char[str.length() + 1];
char strs[str.length() + 1];
std::strcpy(strs, str.c_str());
char *d = new char[delim.length() + 1];
char d[delim.length() + 1];
std::strcpy(d, delim.c_str());
char *p = std::strtok(strs, d);

View File

@ -147,12 +147,12 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_m
如果输入图片的分辨率比较大而且想使用更大的分辨率预测可以设置det_limit_side_len 为想要的值比如1216
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
如果想使用CPU进行预测执行命令如下
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
<a name="DB文本检测模型推理"></a>

View File

@ -154,12 +154,12 @@ Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest si
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```
If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```
<a name="DB_DETECTION"></a>

View File

@ -15,8 +15,6 @@
- 2020.6.8 Add [datasets](./datasets_en.md) and keep updating
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.6.5 Support exporting `attention` model to `inference_model`
- 2020.6.5 Support separate prediction and recognition, output result score
- 2020.5.30 Provide Lightweight Chinese OCR online experience
- 2020.5.30 Model prediction and training support on Windows system
- 2020.5.30 Open source general Chinese OCR model

Binary file not shown.

Before

Width:  |  Height:  |  Size: 188 KiB

After

Width:  |  Height:  |  Size: 189 KiB

View File

@ -46,6 +46,7 @@ class SimpleDataSet(Dataset):
self.seed = seed
logger.info("Initialize indexs of datasets:%s" % label_file_list)
self.data_lines = self.get_image_info_list(label_file_list, ratio_list)
self.check_data()
self.data_idx_order_list = list(range(len(self.data_lines)))
if self.mode == "train" and self.do_shuffle:
self.shuffle_data_random()
@ -102,16 +103,8 @@ class SimpleDataSet(Dataset):
def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines[file_idx]
data = self.data_lines[file_idx]
try:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").strip("\r").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
data = {'img_path': img_path, 'label': label}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
with open(data['img_path'], 'rb') as f:
img = f.read()
data['image'] = img
@ -120,8 +113,8 @@ class SimpleDataSet(Dataset):
except:
error_meg = traceback.format_exc()
self.logger.error(
"When parsing line {}, error happened with msg: {}".format(
data_line, error_meg))
"When parsing file {} and label {}, error happened with msg: {}".format(
data['img_path'],data['label'], error_meg))
outs = None
if outs is None:
# during evaluation, we should fix the idx to get same results for many times of evaluation.
@ -132,3 +125,17 @@ class SimpleDataSet(Dataset):
def __len__(self):
return len(self.data_idx_order_list)
def check_data(self):
new_data_lines = []
for data_line in self.data_lines:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").strip("\r").split(self.delimiter)
file_name = substr[0]
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
if os.path.exists(img_path):
new_data_lines.append({'img_path': img_path, 'label': label})
else:
self.logger.info("{} does not exist!".format(img_path))
self.data_lines = new_data_lines

View File

@ -54,6 +54,27 @@ class CELoss(nn.Layer):
return loss
class KLJSLoss(object):
def __init__(self, mode='kl'):
assert mode in ['kl', 'js', 'KL', 'JS'], "mode can only be one of ['kl', 'js', 'KL', 'JS']"
self.mode = mode
def __call__(self, p1, p2, reduction="mean"):
loss = paddle.multiply(p2, paddle.log( (p2+1e-5)/(p1+1e-5) + 1e-5))
if self.mode.lower() == "js":
loss += paddle.multiply(p1, paddle.log((p1+1e-5)/(p2+1e-5) + 1e-5))
loss *= 0.5
if reduction == "mean":
loss = paddle.mean(loss, axis=[1,2])
elif reduction=="none" or reduction is None:
return loss
else:
loss = paddle.sum(loss, axis=[1,2])
return loss
class DMLLoss(nn.Layer):
"""
DMLLoss
@ -70,16 +91,20 @@ class DMLLoss(nn.Layer):
else:
self.act = None
self.jskl_loss = KLJSLoss(mode="js")
def forward(self, out1, out2):
if self.act is not None:
out1 = self.act(out1)
out2 = self.act(out2)
if len(out1.shape) < 2:
log_out1 = paddle.log(out1)
log_out2 = paddle.log(out2)
loss = (F.kl_div(
log_out1, out2, reduction='batchmean') + F.kl_div(
log_out2, out1, reduction='batchmean')) / 2.0
else:
loss = self.jskl_loss(out1, out2)
return loss

View File

@ -17,7 +17,7 @@ import paddle.nn as nn
from .distillation_loss import DistillationCTCLoss
from .distillation_loss import DistillationDMLLoss
from .distillation_loss import DistillationDistanceLoss
from .distillation_loss import DistillationDistanceLoss, DistillationDBLoss, DistillationDilaDBLoss
class CombinedLoss(nn.Layer):
@ -44,15 +44,16 @@ class CombinedLoss(nn.Layer):
def forward(self, input, batch, **kargs):
loss_dict = {}
loss_all = 0.
for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch, **kargs)
if isinstance(loss, paddle.Tensor):
loss = {"loss_{}_{}".format(str(loss), idx): loss}
weight = self.loss_weight[idx]
loss = {
"{}_{}".format(key, idx): loss[key] * weight
for key in loss
}
loss_dict.update(loss)
loss_dict["loss"] = paddle.add_n(list(loss_dict.values()))
for key in loss.keys():
if key == "loss":
loss_all += loss[key] * weight
else:
loss_dict["{}_{}".format(key, idx)] = loss[key]
loss_dict["loss"] = loss_all
return loss_dict

View File

@ -14,23 +14,76 @@
import paddle
import paddle.nn as nn
import numpy as np
import cv2
from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
from .basic_loss import DistanceLoss
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
def _sum_loss(loss_dict):
if "loss" in loss_dict.keys():
return loss_dict
else:
loss_dict["loss"] = 0.
for k, value in loss_dict.items():
if k == "loss":
continue
else:
loss_dict["loss"] += value
return loss_dict
class DistillationDMLLoss(DMLLoss):
"""
"""
def __init__(self, model_name_pairs=[], act=None, key=None,
name="loss_dml"):
def __init__(self,
model_name_pairs=[],
act=None,
key=None,
maps_name=None,
name="dml"):
super().__init__(act=act)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
self.name = name
self.maps_name = self._check_maps_name(maps_name)
def _check_model_name_pairs(self, model_name_pairs):
if not isinstance(model_name_pairs, list):
return []
elif isinstance(model_name_pairs[0], list) and isinstance(model_name_pairs[0][0], str):
return model_name_pairs
else:
return [model_name_pairs]
def _check_maps_name(self, maps_name):
if maps_name is None:
return None
elif type(maps_name) == str:
return [maps_name]
elif type(maps_name) == list:
return [maps_name]
else:
return None
def _slice_out(self, outs):
new_outs = {}
for k in self.maps_name:
if k == "thrink_maps":
new_outs[k] = outs[:, 0, :, :]
elif k == "threshold_maps":
new_outs[k] = outs[:, 1, :, :]
elif k == "binary_maps":
new_outs[k] = outs[:, 2, :, :]
else:
continue
return new_outs
def forward(self, predicts, batch):
loss_dict = dict()
@ -40,6 +93,8 @@ class DistillationDMLLoss(DMLLoss):
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
if self.maps_name is None:
loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
@ -47,6 +102,21 @@ class DistillationDMLLoss(DMLLoss):
idx)] = loss[key]
else:
loss_dict["{}_{}".format(self.name, idx)] = loss
else:
outs1 = self._slice_out(out1)
outs2 = self._slice_out(out2)
for _c, k in enumerate(outs1.keys()):
loss = super().forward(outs1[k], outs2[k])
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}_{}".format(key, pair[
0], pair[1], map_name, idx)] = loss[key]
else:
loss_dict["{}_{}_{}".format(self.name, self.maps_name[_c],
idx)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
@ -73,6 +143,98 @@ class DistillationCTCLoss(CTCLoss):
return loss_dict
class DistillationDBLoss(DBLoss):
def __init__(self,
model_name_list=[],
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="db",
**kwargs):
super().__init__()
self.model_name_list = model_name_list
self.name = name
self.key = None
def forward(self, predicts, batch):
loss_dict = {}
for idx, model_name in enumerate(self.model_name_list):
out = predicts[model_name]
if self.key is not None:
out = out[self.key]
loss = super().forward(out, batch)
if isinstance(loss, dict):
for key in loss.keys():
if key == "loss":
continue
name = "{}_{}_{}".format(self.name, model_name, key)
loss_dict[name] = loss[key]
else:
loss_dict["{}_{}".format(self.name, model_name)] = loss
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDilaDBLoss(DBLoss):
def __init__(self,
model_name_pairs=[],
key=None,
balance_loss=True,
main_loss_type='DiceLoss',
alpha=5,
beta=10,
ohem_ratio=3,
eps=1e-6,
name="dila_dbloss"):
super().__init__()
self.model_name_pairs = model_name_pairs
self.name = name
self.key = key
def forward(self, predicts, batch):
loss_dict = dict()
for idx, pair in enumerate(self.model_name_pairs):
stu_outs = predicts[pair[0]]
tch_outs = predicts[pair[1]]
if self.key is not None:
stu_preds = stu_outs[self.key]
tch_preds = tch_outs[self.key]
stu_shrink_maps = stu_preds[:, 0, :, :]
stu_binary_maps = stu_preds[:, 2, :, :]
# dilation to teacher prediction
dilation_w = np.array([[1, 1], [1, 1]])
th_shrink_maps = tch_preds[:, 0, :, :]
th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3
dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
for i in range(th_shrink_maps.shape[0]):
dilate_maps[i] = cv2.dilate(
th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
th_shrink_maps = paddle.to_tensor(dilate_maps)
label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
1:]
# calculate the shrink map loss
bce_loss = self.alpha * self.bce_loss(
stu_shrink_maps, th_shrink_maps, label_shrink_mask)
loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
label_shrink_mask)
# k = f"{self.name}_{pair[0]}_{pair[1]}"
k = "{}_{}_{}".format(self.name, pair[0], pair[1])
loss_dict[k] = bce_loss + loss_binary_maps
loss_dict = _sum_loss(loss_dict)
return loss_dict
class DistillationDistanceLoss(DistanceLoss):
"""
"""

View File

@ -55,6 +55,7 @@ class DetMetric(object):
result = self.evaluator.evaluate_image(gt_info_list, det_info_list)
self.results.append(result)
def get_metric(self):
"""
return metrics {

View File

@ -24,8 +24,8 @@ from .cls_metric import ClsMetric
class DistillationMetric(object):
def __init__(self,
key=None,
base_metric_name="RecMetric",
main_indicator='acc',
base_metric_name=None,
main_indicator=None,
**kwargs):
self.main_indicator = main_indicator
self.key = key
@ -42,16 +42,13 @@ class DistillationMetric(object):
main_indicator=self.main_indicator, **self.kwargs)
self.metrics[key].reset()
def __call__(self, preds, *args, **kwargs):
def __call__(self, preds, batch, **kwargs):
assert isinstance(preds, dict)
if self.metrics is None:
self._init_metrcis(preds)
output = dict()
for key in preds:
metric = self.metrics[key].__call__(preds[key], *args, **kwargs)
for sub_key in metric:
output["{}_{}".format(key, sub_key)] = metric[sub_key]
return output
self.metrics[key].__call__(preds[key], batch, **kwargs)
def get_metric(self):
"""

View File

@ -79,6 +79,9 @@ class BaseModel(nn.Layer):
x = self.neck(x)
y["neck_out"] = x
x = self.head(x, targets=data)
if isinstance(x, dict):
y.update(x)
else:
y["head_out"] = x
if self.return_all_feats:
return y

View File

@ -21,7 +21,7 @@ from ppocr.modeling.backbones import build_backbone
from ppocr.modeling.necks import build_neck
from ppocr.modeling.heads import build_head
from .base_model import BaseModel
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import init_model, load_pretrained_params
__all__ = ['DistillationModel']
@ -46,7 +46,7 @@ class DistillationModel(nn.Layer):
pretrained = model_config.pop("pretrained")
model = BaseModel(model_config)
if pretrained is not None:
init_model(model, path=pretrained)
model = load_pretrained_params(model, pretrained)
if freeze_params:
for param in model.parameters():
param.trainable = False

View File

@ -21,7 +21,7 @@ import copy
__all__ = ['build_post_process']
from .db_postprocess import DBPostProcess
from .db_postprocess import DBPostProcess, DistillationDBPostProcess
from .east_postprocess import EASTPostProcess
from .sast_postprocess import SASTPostProcess
from .rec_postprocess import CTCLabelDecode, AttnLabelDecode, SRNLabelDecode, DistillationCTCLabelDecode, \
@ -34,7 +34,8 @@ def build_post_process(config, global_config=None):
support_dict = [
'DBPostProcess', 'EASTPostProcess', 'SASTPostProcess', 'CTCLabelDecode',
'AttnLabelDecode', 'ClsPostProcess', 'SRNLabelDecode', 'PGPostProcess',
'DistillationCTCLabelDecode', 'TableLabelDecode'
'DistillationCTCLabelDecode', 'TableLabelDecode',
'DistillationDBPostProcess'
]
config = copy.deepcopy(config)

View File

@ -187,3 +187,29 @@ class DBPostProcess(object):
boxes_batch.append({'points': boxes})
return boxes_batch
class DistillationDBPostProcess(object):
def __init__(self, model_name=["student"],
key=None,
thresh=0.3,
box_thresh=0.6,
max_candidates=1000,
unclip_ratio=1.5,
use_dilation=False,
score_mode="fast",
**kwargs):
self.model_name = model_name
self.key = key
self.post_process = DBPostProcess(thresh=thresh,
box_thresh=box_thresh,
max_candidates=max_candidates,
unclip_ratio=unclip_ratio,
use_dilation=use_dilation,
score_mode=score_mode)
def __call__(self, predicts, shape_list):
results = {}
for k in self.model_name:
results[k] = self.post_process(predicts[k], shape_list=shape_list)
return results

View File

@ -116,6 +116,27 @@ def load_dygraph_params(config, model, logger, optimizer):
logger.info(f"loaded pretrained_model successful from {pm}")
return {}
def load_pretrained_params(model, path):
if path is None:
return False
if not os.path.exists(path) and not os.path.exists(path + ".pdparams"):
print(f"The pretrained_model {path} does not exists!")
return False
path = path if path.endswith('.pdparams') else path + '.pdparams'
params = paddle.load(path)
state_dict = model.state_dict()
new_state_dict = {}
for k1, k2 in zip(state_dict.keys(), params.keys()):
if list(state_dict[k1].shape) == list(params[k2].shape):
new_state_dict[k1] = params[k2]
else:
print(
f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !"
)
model.set_state_dict(new_state_dict)
print(f"load pretrain successful from {path}")
return model
def save_model(model,
optimizer,

35
test/ocr_rec_params.txt Normal file
View File

@ -0,0 +1,35 @@
model_name:ocr_rec
python:python
gpu_list:0|0,1
Global.auto_cast:null
Global.epoch_num:10
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:
Global.use_gpu:
Global.pretrained_model:null
trainer:norm|pact
norm_train:tools/train.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml
quant_train:deploy/slim/quantization/quant.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml
fpgm_train:null
distill_train:null
eval:tools/eval.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o
quant_export:deploy/slim/quantization/export_model.py -c configs/rec/rec_mv3_none_bilstm_ctc.yml -o
fpgm_export:null
distill_export:null
inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:./inference/ch_ppocr_mobile_v2.0_rec_infer/
--image_dir:./inference/rec_inference
--save_log_path:./test/output/

View File

@ -29,19 +29,21 @@ train_model_list=$(func_parser_value "${lines[0]}")
trainer_list=$(func_parser_value "${lines[10]}")
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
MODE=$2
# prepare pretrained weights and dataset
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../
if [ ${train_model_list[*]} = "ocr_det" ]; then
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../
fi
if [ ${MODE} = "lite_train_infer" ];then
# pretrain lite train data
rm -rf ./train_data/icdar2015
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
cd ./train_data/ && tar xf icdar2015_lite.tar
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos
cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar
ln -s ./icdar2015_lite ./icdar2015
cd ../
epoch=10
@ -49,13 +51,15 @@ if [ ${MODE} = "lite_train_infer" ];then
elif [ ${MODE} = "whole_train_infer" ];then
rm -rf ./train_data/icdar2015
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
cd ./train_data/ && tar xf icdar2015.tar && cd ../
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../
epoch=500
eval_batch_step=200
elif [ ${MODE} = "whole_infer" ];then
rm -rf ./train_data/icdar2015
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
cd ./train_data/ && tar xf icdar2015_infer.tar
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
ln -s ./icdar2015_infer ./icdar2015
cd ../
epoch=10
@ -88,9 +92,11 @@ for train_model in ${train_model_list[*]}; do
elif [ ${train_model} = "ocr_rec" ];then
model_name="ocr_rec"
yml_file="configs/rec/rec_mv3_none_bilstm_ctc.yml"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_rec_data_200.tar
cd ./inference && tar xf ch_rec_data_200.tar && cd ../
img_dir="./inference/ch_rec_data_200/"
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/rec_inference.tar
cd ./inference && tar xf rec_inference.tar && cd ../
img_dir="./inference/rec_inference/"
data_dir=./inference/rec_inference
data_label_file=[./inference/rec_inference/rec_gt_test.txt]
fi
# eval

View File

@ -27,7 +27,7 @@ from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import init_model, load_pretrained_params
from ppocr.utils.utility import print_dict
import tools.program as program
@ -55,7 +55,10 @@ def main():
model = build_model(config['Architecture'])
use_srn = config['Architecture']['algorithm'] == "SRN"
if "model_type" in config['Architecture'].keys():
model_type = config['Architecture']['model_type']
else:
model_type = None
best_model_dict = init_model(config, model)
if len(best_model_dict):

View File

@ -112,7 +112,6 @@ class TextClassifier(object):
if '180' in label and score > self.cls_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1)
elapse = time.time() - starttime
return img_list, cls_res, elapse
@ -146,7 +145,6 @@ def main(args):
cls_res[ino]))
logger.info(
"The predict time about text angle classify module is as follows: ")
text_classifier.cls_times.info(average=False)
if __name__ == "__main__":

View File

@ -64,6 +64,24 @@ class TextRecognizer(object):
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger)
self.benchmark = args.benchmark
if args.benchmark:
import auto_log
pid = os.getpid()
self.autolog = auto_log.AutoLogger(
model_name="rec",
model_precision=args.precision,
batch_size=args.rec_batch_num,
data_shape="dynamic",
save_path=args.save_log_path,
inference_config=self.config,
pids=pid,
process_name=None,
gpu_ids=0 if args.use_gpu else None,
time_keys=[
'preprocess_time', 'inference_time', 'postprocess_time'
],
warmup=10)
def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape
@ -168,6 +186,8 @@ class TextRecognizer(object):
rec_res = [['', 0.0]] * img_num
batch_num = self.rec_batch_num
st = time.time()
if self.benchmark:
self.autolog.times.start()
for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = []
@ -196,6 +216,8 @@ class TextRecognizer(object):
norm_img_batch.append(norm_img[0])
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
if self.benchmark:
self.autolog.times.stamp()
if self.rec_algorithm == "SRN":
encoder_word_pos_list = np.concatenate(encoder_word_pos_list)
@ -222,6 +244,8 @@ class TextRecognizer(object):
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = {"predict": outputs[2]}
else:
self.input_tensor.copy_from_cpu(norm_img_batch)
@ -231,11 +255,14 @@ class TextRecognizer(object):
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
if self.benchmark:
self.autolog.times.stamp()
preds = outputs[0]
rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
if self.benchmark:
self.autolog.times.end(stamp=True)
return rec_res, time.time() - st
@ -251,9 +278,6 @@ def main(args):
for i in range(10):
res = text_recognizer([img])
cpu_mem, gpu_mem, gpu_util = 0, 0, 0
count = 0
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
if not flag:
@ -273,6 +297,8 @@ def main(args):
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
rec_res[ino]))
if args.benchmark:
text_recognizer.autolog.report()
if __name__ == "__main__":

View File

@ -24,9 +24,6 @@ from paddle import inference
import time
from ppocr.utils.logging import get_logger
logger = get_logger()
def str2bool(v):
return v.lower() in ("true", "t", "1")

View File

@ -186,7 +186,10 @@ def train(config,
model.train()
use_srn = config['Architecture']['algorithm'] == "SRN"
try:
model_type = config['Architecture']['model_type']
except:
model_type = None
if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch']

View File

@ -98,7 +98,6 @@ def main(config, device, logger, vdl_writer):
eval_class = build_metric(config['Metric'])
# load pretrain model
pre_best_model_dict = load_dygraph_params(config, model, logger, optimizer)
logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
if valid_dataloader is not None:
logger.info('valid dataloader has {} iters'.format(