Merge pull request #758 from MissPenguin/develop

update docs
This commit is contained in:
MissPenguin 2020-09-19 22:24:21 +08:00 committed by GitHub
commit b287673a0b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 232 additions and 26 deletions

View File

@ -1,5 +1,9 @@
[English](readme_en.md) | 简体中文 [English](readme_en.md) | 简体中文
PaddleOCR提供2种服务部署方式
- 基于PaddleHub Serving的部署代码路径为"`./deploy/hubserving`",按照本教程使用;
- 基于PaddleServing的部署代码路径为"`./deploy/pdserving`",使用方法参考[文档](../pdserving/readme.md)。
# 基于PaddleHub Serving的服务部署 # 基于PaddleHub Serving的服务部署
hubserving服务部署目录下包括检测、识别、2阶段串联三种服务包请根据需求选择相应的服务包进行安装和启动。目录结构如下 hubserving服务部署目录下包括检测、识别、2阶段串联三种服务包请根据需求选择相应的服务包进行安装和启动。目录结构如下

View File

@ -1,5 +1,9 @@
English | [简体中文](readme.md) English | [简体中文](readme.md)
PaddleOCR provides 2 service deployment methods:
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please follow this tutorial.
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please refer to the [tutorial](../pdserving/readme_en.md) for usage.
# Service deployment based on PaddleHub Serving # Service deployment based on PaddleHub Serving
The hubserving service deployment directory includes three service packages: detection, recognition, and two-stage series connection. Please select the corresponding service package to install and start service according to your needs. The directory is as follows: The hubserving service deployment directory includes three service packages: detection, recognition, and two-stage series connection. Please select the corresponding service package to install and start service according to your needs. The directory is as follows:
@ -37,7 +41,7 @@ SET PYTHONPATH=.
### 2. Download inference model ### 2. Download inference model
Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the ultra lightweight model of v1.1 is used, and the default detection model path is: `./inference/ch_ppocr_mobile_v1.1_det_infer/`, the default recognition model path is: `./inference/ch_ppocr_mobile_v1.1_rec_infer/`. Before installing the service module, you need to prepare the inference model and put it in the correct path. By default, the ultra lightweight model of v1.1 is used, and the default detection model path is: `./inference/ch_ppocr_mobile_v1.1_det_infer/`, the default recognition model path is: `./inference/ch_ppocr_mobile_v1.1_rec_infer/`.
**The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list.md). You can also use models trained by yourself. **The model path can be found and modified in `params.py`.** More models provided by PaddleOCR can be obtained from the [model library](../../doc/doc_en/models_list_en.md). You can also use models trained by yourself.
### 3. Install Service Module ### 3. Install Service Module
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs. PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs.

View File

@ -1,5 +1,10 @@
# Paddle Serving 服务部署 [English](readme_en.md) | 简体中文
PaddleOCR提供2种服务部署方式
- 基于PaddleHub Serving的部署代码路径为"`./deploy/hubserving`",使用方法参考[文档](../hubserving/readme.md)。
- 基于PaddleServing的部署代码路径为"`./deploy/pdserving`",按照本教程使用。
# Paddle Serving 服务部署
本教程将介绍基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)部署PaddleOCR在线预测服务的详细步骤。 本教程将介绍基于[Paddle Serving](https://github.com/PaddlePaddle/Serving)部署PaddleOCR在线预测服务的详细步骤。
## 快速启动服务 ## 快速启动服务

View File

@ -0,0 +1,123 @@
English | [简体中文](readme.md)
PaddleOCR provides 2 service deployment methods:
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../hubserving/readme_en.md) for usage.
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial.
# Service deployment based on Paddle Serving
This tutorial will introduce the detail steps of deploying PaddleOCR online prediction service based on [Paddle Serving](https://github.com/PaddlePaddle/Serving).
## Quick start service
### 1. Prepare the environment
Let's first install the relevant components of Paddle Serving. GPU is recommended for service deployment with Paddle Serving.
**Requirements:**
- **CUDA version: 9.0**
- **CUDNN version: 7.0**
- **Operating system version: >= CentOS 6**
- **Python version 2.7/3.6/3.7**
**Installation**
```
# install GPU server
python -m pip install paddle_serving_server_gpu
# or, install CPU server
python -m pip install paddle_serving_server
# install client and App package (CPU/GPU)
python -m pip install paddle_serving_app paddle_serving_client
```
### 2. Model transformation
You can directly use converted model provided by `paddle_serving_app` for convenience. Execute the following command to obtain:
```
python -m paddle_serving_app.package --get_model ocr_rec
tar -xzvf ocr_rec.tar.gz
python -m paddle_serving_app.package --get_model ocr_det
tar -xzvf ocr_det.tar.gz
```
Executing the above command will download the `db_crnn_mobile` model, which is in different format with inference model. If you want to use other models for deployment, you can refer to the [tutorial](https://github.com/PaddlePaddle/Serving/blob/develop/doc/INFERENCE_TO_SERVING_CN.md) to convert your inference model to a model which is deployable for Paddle Serving.
We take `ch_rec_r34_vd_crnn` model as example. Download the inference model by executing the following command:
```
wget --no-check-certificate https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar
tar xf ch_rec_r34_vd_crnn_infer.tar
```
Convert the downloaded model by executing the following python script:
```
from paddle_serving_client.io import inference_model_to_serving
inference_model_dir = "ch_rec_r34_vd_crnn"
serving_client_dir = "serving_client_dir"
serving_server_dir = "serving_server_dir"
feed_var_names, fetch_var_names = inference_model_to_serving(
inference_model_dir, serving_client_dir, serving_server_dir, model_filename="model", params_filename="params")
```
Finally, model configuration of client and server will be generated in `serving_client_dir` and `serving_server_dir`.
### 3. Start service
Start the standard version or the fast version service according to your actual needs. The comparison of the two versions is shown in the table below:
|version|characteristics|recommended scenarios|
|-|-|-|
|standard version|High stability, suitable for distributed deployment|Large throughput and cross regional deployment|
|fast version|Easy to deploy and fast to predict|Suitable for scenarios which requires high prediction speed and fast iteration speed|
#### Mode 1. Start the standard mode service
```
# start with CPU
python -m paddle_serving_server.serve --model ocr_det_model --port 9293
python ocr_web_server.py cpu
# or, with GPU
python -m paddle_serving_server_gpu.serve --model ocr_det_model --port 9293 --gpu_id 0
python ocr_web_server.py gpu
```
#### Mode 2. Start the fast mode service
```
# start with CPU
python ocr_local_server.py cpu
# or, with GPU
python ocr_local_server.py gpu
```
## Send prediction requests
```
python ocr_web_client.py
```
## Returned result format
The returned result is a JSON string, eg.
```
{u'result': {u'res': [u'\u571f\u5730\u6574\u6cbb\u4e0e\u571f\u58e4\u4fee\u590d\u7814\u7a76\u4e2d\u5fc3', u'\u534e\u5357\u519c\u4e1a\u5927\u5b661\u7d20\u56fe']}}
```
You can also print the readable result in `res`:
```
土地整治与土壤修复研究中心
华南农业大学1素图
```
## User defined service module modification
The pre-processing and post-processing process, can be found in the `preprocess` and `postprocess` function in `ocr_web_server.py` or `ocr_local_server.py`. The pre-processing/post-processing library for common CV models provided by `paddle_serving_app` is called.
You can modify the corresponding code as actual needs.
If you only want to start the detection service or the recognition service, execute the corresponding script reffering to the following table. Indicate the CPU or GPU is used in the start command parameters.
| task | standard | fast |
| ---- | ----------------- | ------------------- |
| detection | det_web_server.py | det_local_server.py |
| recognition | rec_web_server.py | rec_local_server.py |
More info can be found in [Paddle Serving](https://github.com/PaddlePaddle/Serving).

View File

@ -7,22 +7,22 @@
- [3. 多语言识别模型](#多语言识别模型) - [3. 多语言识别模型](#多语言识别模型)
- [三、文本方向分类模型](#文本方向分类模型) - [三、文本方向分类模型](#文本方向分类模型)
PaddleOCR提供的可下载模型包括`预测模型`、`训练模型`、`预训练模型`、`slim模型`,模型区别说明如下: PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训练模型`、`slim模型`,模型区别说明如下:
|模型类型|模型格式|简介| |模型类型|模型格式|简介|
|-|-|-| |-|-|-|
|预测模型|model、params|用于python预测引擎推理[详情](./inference.md)| |推理模型|model、params|用于python预测引擎推理[详情](./inference.md)|
|训练模型、预训练模型|\*.pdmodel、\*.pdopt、\*.pdparams|训练过程中保存的checkpoints模型保存的是模型的参数多用于模型指标评估和恢复训练| |训练模型、预训练模型|\*.pdmodel、\*.pdopt、\*.pdparams|训练过程中保存的checkpoints模型保存的是模型的参数多用于模型指标评估和恢复训练|
|slim模型|-|用于lite部署| |slim模型|-|用于lite部署|
<a name="文本检测模型"></a> <a name="文本检测模型"></a>
### 一、文本检测模型 ### 一、文本检测模型
|模型名称|模型简介|预测模型大小|下载地址| |模型名称|模型简介|推理模型大小|下载地址|
|-|-|-|-| |-|-|-|-|
|ch_ppocr_mobile_slim_v1.1_det|slim裁剪版超轻量模型支持中英文、多语种文本检测|-|[预测模型]() / [训练模型]() / [slim模型]()| |ch_ppocr_mobile_slim_v1.1_det|slim裁剪版超轻量模型支持中英文、多语种文本检测|1.4M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|
|ch_ppocr_mobile_v1.1_det|原始超轻量模型,支持中英文、多语种文本检测|2.6M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)| |ch_ppocr_mobile_v1.1_det|原始超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|
|ch_ppocr_server_v1.1_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|47.2M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)| |ch_ppocr_server_v1.1_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|47.2M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)|
<a name="文本识别模型"></a> <a name="文本识别模型"></a>
@ -30,42 +30,42 @@ PaddleOCR提供的可下载模型包括`预测模型`、`训练模型`、`预训
<a name="中文识别模型"></a> <a name="中文识别模型"></a>
#### 1. 中文识别模型 #### 1. 中文识别模型
|模型名称|模型简介|预测模型大小|下载地址| |模型名称|模型简介|推理模型大小|下载地址|
|-|-|-|-| |-|-|-|-|
|ch_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型支持中英文、数字识别|-|[预测模型]() / [训练模型]() / [slim模型]()| |ch_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型支持中英文、数字识别|1.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_opt.nb)|
|ch_ppocr_mobile_v1.1_rec|原始超轻量模型,支持中英文、数字识别|4.6M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar)| |ch_ppocr_mobile_v1.1_rec|原始超轻量模型,支持中英文、数字识别|4.6M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar)|
|ch_ppocr_server_v1.1_rec|通用模型,支持中英文、数字识别|105M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar)| |ch_ppocr_server_v1.1_rec|通用模型,支持中英文、数字识别|105M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar)|
**说明:** `训练模型`是基于预训练模型在真实数据与竖排合成文本数据上finetune得到的模型在真实应用场景中有着更好的表现`预训练模型`则是直接基于全量真实数据与合成数据训练得到更适合用于在自己的数据集上finetune。 **说明:** `训练模型`是基于预训练模型在真实数据与竖排合成文本数据上finetune得到的模型在真实应用场景中有着更好的表现`预训练模型`则是直接基于全量真实数据与合成数据训练得到更适合用于在自己的数据集上finetune。
<a name="英文识别模型"></a> <a name="英文识别模型"></a>
#### 2. 英文识别模型 #### 2. 英文识别模型
|模型名称|模型简介|预测模型大小|下载地址| |模型名称|模型简介|推理模型大小|下载地址|
|-|-|-|-| |-|-|-|-|
|en_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型支持英文、数字识别|-|[预测模型]() / [训练模型]() / [slim模型]()| |en_ppocr_mobile_slim_v1.1_rec|slim裁剪量化版超轻量模型支持英文、数字识别|0.9M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_opt.nb)|
|en_ppocr_mobile_v1.1_rec|原始超轻量模型,支持英文、数字识别|2.0M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar)| |en_ppocr_mobile_v1.1_rec|原始超轻量模型,支持英文、数字识别|2.0M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar)|
<a name="多语言识别模型"></a> <a name="多语言识别模型"></a>
#### 3. 多语言识别模型(更多语言持续更新中... #### 3. 多语言识别模型(更多语言持续更新中...
|模型名称|模型简介|预测模型大小|下载地址| |模型名称|模型简介|推理模型大小|下载地址|
|-|-|-|-| |-|-|-|-|
| french_ppocr_mobile_v1.1_rec |法文识别|2.1M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar)| | french_ppocr_mobile_v1.1_rec |法文识别|2.1M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar)|
| german_ppocr_mobile_v1.1_rec |德文识别|2.1M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar)| | german_ppocr_mobile_v1.1_rec |德文识别|2.1M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar)|
| korean_ppocr_mobile_v1.1_rec |韩文识别|3.4M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar)| | korean_ppocr_mobile_v1.1_rec |韩文识别|3.4M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar)|
| japan_ppocr_mobile_v1.1_rec |日文识别|3.7M|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar)| | japan_ppocr_mobile_v1.1_rec |日文识别|3.7M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar)|
<a name="文本方向分类模型"></a> <a name="文本方向分类模型"></a>
### 三、文本方向分类模型 ### 三、文本方向分类模型
|模型名称|模型简介|预测模型大小|下载地址| |模型名称|模型简介|推理模型大小|下载地址|
|-|-|-|-| |-|-|-|-|
|ch_ppocr_mobile_v1.1_cls_quant|slim量化版模型|-|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim模型]()| |ch_ppocr_mobile_v1.1_cls_quant|slim量化版模型|0.5M|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim模型]()|
|ch_ppocr_mobile_v1.1_cls|原始模型|850kb|[预测模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar)| |ch_ppocr_mobile_v1.1_cls|原始模型|850kb|[推理模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar)|
## OCR模型列表V1.07月16日更新 ## OCR模型列表V1.07月16日更新
|模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址| |模型名称|模型简介|检测模型地址|识别模型地址|支持空格的识别模型地址|
|-|-|-|-|-| |-|-|-|-|-|
|chinese_db_crnn_mobile|8.6M超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar) |chinese_db_crnn_mobile|8.6M超轻量级中文OCR模型|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar) |chinese_db_crnn_server|通用中文OCR模型|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[推理模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)

View File

@ -73,7 +73,7 @@ You can also use `-o` to change the training parameters without modifying the ym
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001 python3 tools/train.py -c configs/det/det_mv3_db.yml -o Optimizer.base_lr=0.0001
``` ```
#### load trained model and conntinue training #### load trained model and continue training
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded. If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
For example: For example:

View File

@ -0,0 +1,70 @@
## OCR model listV1.1, updated on 9.22
- [1. Text Detection Model](#Detection)
- [2. Text Recognition Model](#Recognition)
- [Chinese Recognition Model](#Chinese)
- [English Recognition Model](#English)
- [Multilingual Recognition Model](#Multilingual)
- [3. Text Angle Classification Model](#Angle)
The downloadable models provided by PaddleOCR include `inference model`, `trained model`, `pre-trained model` and `slim model`. The differences between the models are as follows:
|model type|model format|description|
|-|-|-|
|inference model|model、params|Used for reasoning based on Python prediction engine. [detail](./inference_en.md)|
|trained model / pre-trained model|\*.pdmodel、\*.pdopt、\*.pdparams|The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|slim model|-|Generally used for Lite deployment|
<a name="Detection"></a>
### 1. Text Detection Model
|model name|description|model size|download|
|-|-|-|-|
|ch_ppocr_mobile_slim_v1.1_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|1.4M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/det/ch_ppocr_mobile_v1.1_det_prune_opt.nb)|
|ch_ppocr_mobile_v1.1_det|Original lightweight model, supporting Chinese, English, multilingual text detection|2.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/det/ch_ppocr_mobile_v1.1_det_train.tar)|
|ch_ppocr_server_v1.1_det|General model, which is larger than the lightweight model, but achieved better performance|47.2M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/det/ch_ppocr_server_v1.1_det_train.tar)|
<a name="Recognition"></a>
### 2. Text Recognition Model
<a name="Chinese"></a>
#### Chinese Recognition Model
|model name|description|model size|download|
|-|-|-|-|
|ch_ppocr_mobile_slim_v1.1_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|1.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/rec/ch_ppocr_mobile_v1.1_rec_quant_opt.nb)|
|ch_ppocr_mobile_v1.1_rec|Original lightweight model, supporting Chinese, English and number recognition|4.6M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/rec/ch_ppocr_mobile_v1.1_rec_pre.tar)|
|ch_ppocr_server_v1.1_rec|General model, supporting Chinese, English and number recognition|105M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/20-09-22/server/rec/ch_ppocr_server_v1.1_rec_pre.tar)|
**Note:** The `trained model` is finetuned on the `pre-trained model` with real data and synthsized vertical text data, which achieved better performance in real scene. The `pre-trained model` is directly trained on the full amount of real data and synthsized data, which is more suitable for finetune on your own dataset.
<a name="English"></a>
#### English Recognition Model
|model name|description|model size|download|
|-|-|-|-|
|en_ppocr_mobile_slim_v1.1_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|0.9M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_infer.tar) / [slim model](https://paddleocr.bj.bcebos.com/20-09-22/mobile-slim/en/en_ppocr_mobile_v1.1_rec_quant_opt.nb)|
|en_ppocr_mobile_v1.1_rec|Original lightweight model, supporting English and number recognition|2.0M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/en/en_ppocr_mobile_v1.1_rec_train.tar)|
<a name="Multilingual"></a>
#### Multilingual Recognition ModelUpdating...
|model name|description|model size|download|
|-|-|-|-|
| french_ppocr_mobile_v1.1_rec |Lightweight model for French recognition|2.1M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/fr/french_ppocr_mobile_v1.1_rec_train.tar)|
| german_ppocr_mobile_v1.1_rec |German model for French recognition|2.1M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/ge/german_ppocr_mobile_v1.1_rec_train.tar)|
| korean_ppocr_mobile_v1.1_rec |Lightweight model for Korean recognition|3.4M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/kr/korean_ppocr_mobile_v1.1_rec_train.tar)|
| japan_ppocr_mobile_v1.1_rec |Lightweight model for Japanese recognition|3.7M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/mobile/jp/japan_ppocr_mobile_v1.1_rec_train.tar)|
<a name="Angle"></a>
### 3. Text Angle Classification Model
|model name|description|model size|download|
|-|-|-|-|
|ch_ppocr_mobile_v1.1_cls_quant|Slim quantized model|0.5M|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_quant_train.tar) / [slim model]()|
|ch_ppocr_mobile_v1.1_cls|Original model|850kb|[inference model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/20-09-22/cls/ch_ppocr_mobile_v1.1_cls_train.tar)|
## OCR model listV1.0, updated on 7.16
|model name|description|detection model|recognition model|recognition model supporting space recognition|
|-|-|-|-|-|
|chinese_db_crnn_mobile|8.6M lightweight OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)
|chinese_db_crnn_server|General OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)