Merge pull request #2921 from LDOUBLEV/bm_trt_dyg
suport TensorRT inference
This commit is contained in:
commit
b38f353489
|
@ -30,6 +30,42 @@ void DBDetector::LoadModel(const std::string &model_dir) {
|
|||
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
|
||||
: paddle_infer::Config::Precision::kFloat32,
|
||||
false, false);
|
||||
std::map<std::string, std::vector<int>> min_input_shape = {
|
||||
{"x", {1, 3, 50, 50}},
|
||||
{"conv2d_92.tmp_0", {1, 96, 20, 20}},
|
||||
{"conv2d_91.tmp_0", {1, 96, 10, 10}},
|
||||
{"nearest_interp_v2_1.tmp_0", {1, 96, 10, 10}},
|
||||
{"nearest_interp_v2_2.tmp_0", {1, 96, 20, 20}},
|
||||
{"nearest_interp_v2_3.tmp_0", {1, 24, 20, 20}},
|
||||
{"nearest_interp_v2_4.tmp_0", {1, 24, 20, 20}},
|
||||
{"nearest_interp_v2_5.tmp_0", {1, 24, 20, 20}},
|
||||
{"elementwise_add_7", {1, 56, 2, 2}},
|
||||
{"nearest_interp_v2_0.tmp_0", {1, 96, 2, 2}}};
|
||||
std::map<std::string, std::vector<int>> max_input_shape = {
|
||||
{"x", {1, 3, this->max_side_len_, this->max_side_len_}},
|
||||
{"conv2d_92.tmp_0", {1, 96, 400, 400}},
|
||||
{"conv2d_91.tmp_0", {1, 96, 200, 200}},
|
||||
{"nearest_interp_v2_1.tmp_0", {1, 96, 200, 200}},
|
||||
{"nearest_interp_v2_2.tmp_0", {1, 96, 400, 400}},
|
||||
{"nearest_interp_v2_3.tmp_0", {1, 24, 400, 400}},
|
||||
{"nearest_interp_v2_4.tmp_0", {1, 24, 400, 400}},
|
||||
{"nearest_interp_v2_5.tmp_0", {1, 24, 400, 400}},
|
||||
{"elementwise_add_7", {1, 56, 400, 400}},
|
||||
{"nearest_interp_v2_0.tmp_0", {1, 96, 400, 400}}};
|
||||
std::map<std::string, std::vector<int>> opt_input_shape = {
|
||||
{"x", {1, 3, 640, 640}},
|
||||
{"conv2d_92.tmp_0", {1, 96, 160, 160}},
|
||||
{"conv2d_91.tmp_0", {1, 96, 80, 80}},
|
||||
{"nearest_interp_v2_1.tmp_0", {1, 96, 80, 80}},
|
||||
{"nearest_interp_v2_2.tmp_0", {1, 96, 160, 160}},
|
||||
{"nearest_interp_v2_3.tmp_0", {1, 24, 160, 160}},
|
||||
{"nearest_interp_v2_4.tmp_0", {1, 24, 160, 160}},
|
||||
{"nearest_interp_v2_5.tmp_0", {1, 24, 160, 160}},
|
||||
{"elementwise_add_7", {1, 56, 40, 40}},
|
||||
{"nearest_interp_v2_0.tmp_0", {1, 96, 40, 40}}};
|
||||
|
||||
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
||||
opt_input_shape);
|
||||
}
|
||||
} else {
|
||||
config.DisableGpu();
|
||||
|
@ -48,7 +84,7 @@ void DBDetector::LoadModel(const std::string &model_dir) {
|
|||
config.SwitchIrOptim(true);
|
||||
|
||||
config.EnableMemoryOptim();
|
||||
config.DisableGlogInfo();
|
||||
// config.DisableGlogInfo();
|
||||
|
||||
this->predictor_ = CreatePredictor(config);
|
||||
}
|
||||
|
|
|
@ -106,6 +106,15 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
|
|||
this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
|
||||
: paddle_infer::Config::Precision::kFloat32,
|
||||
false, false);
|
||||
std::map<std::string, std::vector<int>> min_input_shape = {
|
||||
{"x", {1, 3, 32, 10}}};
|
||||
std::map<std::string, std::vector<int>> max_input_shape = {
|
||||
{"x", {1, 3, 32, 2000}}};
|
||||
std::map<std::string, std::vector<int>> opt_input_shape = {
|
||||
{"x", {1, 3, 32, 320}}};
|
||||
|
||||
config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
|
||||
opt_input_shape);
|
||||
}
|
||||
} else {
|
||||
config.DisableGpu();
|
||||
|
|
|
@ -77,19 +77,13 @@ void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
|
|||
|
||||
int resize_h = int(float(h) * ratio);
|
||||
int resize_w = int(float(w) * ratio);
|
||||
|
||||
|
||||
resize_h = max(int(round(float(resize_h) / 32) * 32), 32);
|
||||
resize_w = max(int(round(float(resize_w) / 32) * 32), 32);
|
||||
|
||||
if (!use_tensorrt) {
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
ratio_h = float(resize_h) / float(h);
|
||||
ratio_w = float(resize_w) / float(w);
|
||||
} else {
|
||||
cv::resize(img, resize_img, cv::Size(640, 640));
|
||||
ratio_h = float(640) / float(h);
|
||||
ratio_w = float(640) / float(w);
|
||||
}
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
|
||||
ratio_h = float(resize_h) / float(h);
|
||||
ratio_w = float(resize_w) / float(w);
|
||||
}
|
||||
|
||||
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
||||
|
@ -108,23 +102,12 @@ void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
|
|||
resize_w = imgW;
|
||||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
if (!use_tensorrt) {
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
|
||||
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
|
||||
{127, 127, 127});
|
||||
} else {
|
||||
int k = int(img.cols * 32 / img.rows);
|
||||
if (k >= 100) {
|
||||
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
} else {
|
||||
cv::resize(img, resize_img, cv::Size(k, 32), 0.f, 0.f, cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(100 - k),
|
||||
cv::BORDER_CONSTANT, {127, 127, 127});
|
||||
}
|
||||
}
|
||||
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
|
||||
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
|
||||
{127, 127, 127});
|
||||
}
|
||||
|
||||
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
||||
|
@ -142,15 +125,11 @@ void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
|
|||
else
|
||||
resize_w = int(ceilf(imgH * ratio));
|
||||
|
||||
if (!use_tensorrt) {
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (resize_w < imgW) {
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||
}
|
||||
} else {
|
||||
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f, cv::INTER_LINEAR);
|
||||
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
|
||||
cv::INTER_LINEAR);
|
||||
if (resize_w < imgW) {
|
||||
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
|
||||
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ cmake .. \
|
|||
-DWITH_MKL=ON \
|
||||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DUSE_TENSORRT=OFF \
|
||||
-DWITH_TENSORRT=OFF \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
|
|
|
@ -21,6 +21,9 @@ import json
|
|||
from PIL import Image, ImageDraw, ImageFont
|
||||
import math
|
||||
from paddle import inference
|
||||
import time
|
||||
from ppocr.utils.logging import get_logger
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
def parse_args():
|
||||
|
@ -98,6 +101,7 @@ def parse_args():
|
|||
parser.add_argument("--cls_thresh", type=float, default=0.9)
|
||||
|
||||
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
|
||||
parser.add_argument("--cpu_threads", type=int, default=10)
|
||||
parser.add_argument("--use_pdserving", type=str2bool, default=False)
|
||||
|
||||
parser.add_argument("--use_mp", type=str2bool, default=False)
|
||||
|
@ -135,19 +139,97 @@ def create_predictor(args, mode, logger):
|
|||
config.enable_use_gpu(args.gpu_mem, 0)
|
||||
if args.use_tensorrt:
|
||||
config.enable_tensorrt_engine(
|
||||
precision_mode=inference.PrecisionType.Half
|
||||
if args.use_fp16 else inference.PrecisionType.Float32,
|
||||
max_batch_size=args.max_batch_size)
|
||||
precision_mode=inference.PrecisionType.Float32,
|
||||
max_batch_size=args.max_batch_size,
|
||||
min_subgraph_size=3) # skip the minmum trt subgraph
|
||||
if mode == "det" and "mobile" in model_file_path:
|
||||
min_input_shape = {
|
||||
"x": [1, 3, 50, 50],
|
||||
"conv2d_92.tmp_0": [1, 96, 20, 20],
|
||||
"conv2d_91.tmp_0": [1, 96, 10, 10],
|
||||
"nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 24, 20, 20],
|
||||
"elementwise_add_7": [1, 56, 2, 2],
|
||||
"nearest_interp_v2_0.tmp_0": [1, 96, 2, 2]
|
||||
}
|
||||
max_input_shape = {
|
||||
"x": [1, 3, 2000, 2000],
|
||||
"conv2d_92.tmp_0": [1, 96, 400, 400],
|
||||
"conv2d_91.tmp_0": [1, 96, 200, 200],
|
||||
"nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 24, 400, 400],
|
||||
"elementwise_add_7": [1, 56, 400, 400],
|
||||
"nearest_interp_v2_0.tmp_0": [1, 96, 400, 400]
|
||||
}
|
||||
opt_input_shape = {
|
||||
"x": [1, 3, 640, 640],
|
||||
"conv2d_92.tmp_0": [1, 96, 160, 160],
|
||||
"conv2d_91.tmp_0": [1, 96, 80, 80],
|
||||
"nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 24, 160, 160],
|
||||
"elementwise_add_7": [1, 56, 40, 40],
|
||||
"nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
|
||||
}
|
||||
if mode == "det" and "server" in model_file_path:
|
||||
min_input_shape = {
|
||||
"x": [1, 3, 50, 50],
|
||||
"conv2d_59.tmp_0": [1, 96, 20, 20],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
|
||||
}
|
||||
max_input_shape = {
|
||||
"x": [1, 3, 2000, 2000],
|
||||
"conv2d_59.tmp_0": [1, 96, 400, 400],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
|
||||
}
|
||||
opt_input_shape = {
|
||||
"x": [1, 3, 640, 640],
|
||||
"conv2d_59.tmp_0": [1, 96, 160, 160],
|
||||
"nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
|
||||
"nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
|
||||
"nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
|
||||
"nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
|
||||
}
|
||||
elif mode == "rec":
|
||||
min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
|
||||
elif mode == "cls":
|
||||
min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
|
||||
else:
|
||||
min_input_shape = {"x": [1, 3, 10, 10]}
|
||||
max_input_shape = {"x": [1, 3, 1000, 1000]}
|
||||
opt_input_shape = {"x": [1, 3, 500, 500]}
|
||||
config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
|
||||
opt_input_shape)
|
||||
|
||||
else:
|
||||
config.disable_gpu()
|
||||
config.set_cpu_math_library_num_threads(6)
|
||||
if hasattr(args, "cpu_threads"):
|
||||
config.set_cpu_math_library_num_threads(args.cpu_threads)
|
||||
else:
|
||||
# default cpu threads as 10
|
||||
config.set_cpu_math_library_num_threads(10)
|
||||
if args.enable_mkldnn:
|
||||
# cache 10 different shapes for mkldnn to avoid memory leak
|
||||
config.set_mkldnn_cache_capacity(10)
|
||||
config.enable_mkldnn()
|
||||
# TODO LDOUBLEV: fix mkldnn bug when bach_size > 1
|
||||
#config.set_mkldnn_op({'conv2d', 'depthwise_conv2d', 'pool2d', 'batch_norm'})
|
||||
args.rec_batch_num = 1
|
||||
|
||||
# enable memory optim
|
||||
config.enable_memory_optim()
|
||||
|
@ -210,7 +292,7 @@ def draw_ocr(image,
|
|||
txts=None,
|
||||
scores=None,
|
||||
drop_score=0.5,
|
||||
font_path="./doc/simfang.ttf"):
|
||||
font_path="./doc/fonts/simfang.ttf"):
|
||||
"""
|
||||
Visualize the results of OCR detection and recognition
|
||||
args:
|
||||
|
@ -418,22 +500,4 @@ def draw_boxes(image, boxes, scores=None, drop_score=0.5):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_img = "./doc/test_v2"
|
||||
predict_txt = "./doc/predict.txt"
|
||||
f = open(predict_txt, 'r')
|
||||
data = f.readlines()
|
||||
img_path, anno = data[0].strip().split('\t')
|
||||
img_name = os.path.basename(img_path)
|
||||
img_path = os.path.join(test_img, img_name)
|
||||
image = Image.open(img_path)
|
||||
|
||||
data = json.loads(anno)
|
||||
boxes, txts, scores = [], [], []
|
||||
for dic in data:
|
||||
boxes.append(dic['points'])
|
||||
txts.append(dic['transcription'])
|
||||
scores.append(round(dic['scores'], 3))
|
||||
|
||||
new_img = draw_ocr(image, boxes, txts, scores)
|
||||
|
||||
cv2.imwrite(img_name, new_img)
|
||||
pass
|
||||
|
|
Loading…
Reference in New Issue