From b4d7be33f0a37bf729316491cc75e927895d5bff Mon Sep 17 00:00:00 2001 From: LDOUBLEV Date: Tue, 20 Jul 2021 12:22:57 +0000 Subject: [PATCH] fix comments --- tests/ocr_det_params.txt | 2 +- tests/prepare.sh | 13 +-- tests/test.sh | 219 ++++++++++++++++++++------------------- 3 files changed, 116 insertions(+), 118 deletions(-) diff --git a/tests/ocr_det_params.txt b/tests/ocr_det_params.txt index 2bafbe9c..f74fc3f5 100644 --- a/tests/ocr_det_params.txt +++ b/tests/ocr_det_params.txt @@ -14,7 +14,7 @@ null:null ## trainer:norm_train|pact_train norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained -pact_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy +pact_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o fpgm_train:null distill_train:null null:null diff --git a/tests/prepare.sh b/tests/prepare.sh index c584ada5..3c6206ae 100644 --- a/tests/prepare.sh +++ b/tests/prepare.sh @@ -25,34 +25,27 @@ function func_parser_value(){ IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[1]}") -train_model_list=$(func_parser_value "${lines[1]}") trainer_list=$(func_parser_value "${lines[14]}") - # MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] MODE=$2 -# prepare pretrained weights and dataset -wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams -wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar -cd pretrain_models && tar xf det_mv3_db_v2.0_train.tar && cd ../ if [ ${MODE} = "lite_train_infer" ];then # pretrain lite train data + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams rm -rf ./train_data/icdar2015 wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar cd ./train_data/ && tar xf icdar2015_lite.tar ln -s ./icdar2015_lite ./icdar2015 cd ../ - epoch=10 - eval_batch_step=10 elif [ ${MODE} = "whole_train_infer" ];then + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams rm -rf ./train_data/icdar2015 wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar cd ./train_data/ && tar xf icdar2015.tar && cd ../ - epoch=500 - eval_batch_step=200 elif [ ${MODE} = "whole_infer" ];then + wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams rm -rf ./train_data/icdar2015 wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar cd ./train_data/ && tar xf icdar2015_infer.tar diff --git a/tests/test.sh b/tests/test.sh index 9caab02a..7398ff6a 100644 --- a/tests/test.sh +++ b/tests/test.sh @@ -182,10 +182,7 @@ function func_inference(){ if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then continue fi - if [ ${use_trt} = "False" ] && [ ${_flag_quant} = "True" ]; then - continue - fi - if [ ${precision} != "int8" ] && [ ${_flag_quant} = "True" ]; then + if [ ${use_trt} = "False" || ${precision} != "int8"] && [ ${_flag_quant} = "True" ]; then continue fi for batch_size in ${batch_size_list[*]}; do @@ -208,108 +205,7 @@ function func_inference(){ done } -if [ ${MODE} != "infer" ]; then - -IFS="|" -export Count=0 -USE_GPU_KEY=(${train_use_gpu_value}) -for gpu in ${gpu_list[*]}; do - use_gpu=${USE_GPU_KEY[Count]} - Count=$(($Count + 1)) - if [ ${gpu} = "-1" ];then - env="" - elif [ ${#gpu} -le 1 ];then - env="export CUDA_VISIBLE_DEVICES=${gpu}" - eval ${env} - elif [ ${#gpu} -le 15 ];then - IFS="," - array=(${gpu}) - env="export CUDA_VISIBLE_DEVICES=${array[0]}" - IFS="|" - else - IFS=";" - array=(${gpu}) - ips=${array[0]} - gpu=${array[1]} - IFS="|" - env=" " - fi - for autocast in ${autocast_list[*]}; do - for trainer in ${trainer_list[*]}; do - flag_quant=False - if [ ${trainer} = ${pact_key} ]; then - run_train=${pact_trainer} - run_export=${pact_export} - flag_quant=True - elif [ ${trainer} = "${fpgm_key}" ]; then - run_train=${fpgm_trainer} - run_export=${fpgm_export} - elif [ ${trainer} = "${distill_key}" ]; then - run_train=${distill_trainer} - run_export=${distill_export} - elif [ ${trainer} = ${trainer_key1} ]; then - run_train=${trainer_value1} - run_export=${export_value1} - elif [[ ${trainer} = ${trainer_key2} ]]; then - run_train=${trainer_value2} - run_export=${export_value2} - else - run_train=${norm_trainer} - run_export=${norm_export} - fi - - if [ ${run_train} = "null" ]; then - continue - fi - - set_autocast=$(func_set_params "${autocast_key}" "${autocast}") - set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") - set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") - set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") - set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") - set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") - save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" - - set_save_model=$(func_set_params "${save_model_key}" "${save_log}") - if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " - elif [ ${#gpu} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" - else # train with multi-machine - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" - fi - # run train - eval "unset CUDA_VISIBLE_DEVICES" - eval $cmd - status_check $? "${cmd}" "${status_log}" - - set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") - # run eval - if [ ${eval_py} != "null" ]; then - set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") - eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" - eval $eval_cmd - status_check $? "${eval_cmd}" "${status_log}" - fi - - if [ ${run_export} != "null" ]; then - # run export model - save_infer_path="${save_log}" - export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}" - eval $export_cmd - status_check $? "${export_cmd}" "${status_log}" - - #run inference - eval $env - save_infer_path="${save_log}" - func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" - eval "unset CUDA_VISIBLE_DEVICES" - fi - done - done -done - -else +if [ ${MODE} = "infer" ]; then GPUID=$3 if [ ${#GPUID} -le 0 ];then env=" " @@ -319,5 +215,114 @@ else echo $env #run inference func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False" -fi + +else + IFS="|" + export Count=0 + USE_GPU_KEY=(${train_use_gpu_value}) + for gpu in ${gpu_list[*]}; do + use_gpu=${USE_GPU_KEY[Count]} + Count=$(($Count + 1)) + if [ ${gpu} = "-1" ];then + env="" + elif [ ${#gpu} -le 1 ];then + env="export CUDA_VISIBLE_DEVICES=${gpu}" + eval ${env} + elif [ ${#gpu} -le 15 ];then + IFS="," + array=(${gpu}) + env="export CUDA_VISIBLE_DEVICES=${array[0]}" + IFS="|" + else + IFS=";" + array=(${gpu}) + ips=${array[0]} + gpu=${array[1]} + IFS="|" + env=" " + fi + for autocast in ${autocast_list[*]}; do + for trainer in ${trainer_list[*]}; do + flag_quant=False + if [ ${trainer} = ${pact_key} ]; then + run_train=${pact_trainer} + run_export=${pact_export} + flag_quant=True + elif [ ${trainer} = "${fpgm_key}" ]; then + run_train=${fpgm_trainer} + run_export=${fpgm_export} + elif [ ${trainer} = "${distill_key}" ]; then + run_train=${distill_trainer} + run_export=${distill_export} + elif [ ${trainer} = ${trainer_key1} ]; then + run_train=${trainer_value1} + run_export=${export_value1} + elif [[ ${trainer} = ${trainer_key2} ]]; then + run_train=${trainer_value2} + run_export=${export_value2} + else + run_train=${norm_trainer} + run_export=${norm_export} + fi + + if [ ${run_train} = "null" ]; then + continue + fi + + set_autocast=$(func_set_params "${autocast_key}" "${autocast}") + set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") + set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") + set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") + set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") + set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") + save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" + + # load pretrain from norm training if current trainer is pact or fpgm trainer + if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then + set_pretrain="${load_norm_train_model}" + fi + + set_save_model=$(func_set_params "${save_model_key}" "${save_log}") + if [ ${#gpu} -le 2 ];then # train with cpu or single gpu + cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " + elif [ ${#gpu} -le 15 ];then # train with multi-gpu + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" + else # train with multi-machine + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" + fi + # run train + eval "unset CUDA_VISIBLE_DEVICES" + eval $cmd + status_check $? "${cmd}" "${status_log}" + + set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") + # save norm trained models to set pretrain for pact training and fpgm training + if [ ${trainer} = ${trainer_norm} ]; then + load_norm_train_model=${set_eval_pretrain} + fi + # run eval + if [ ${eval_py} != "null" ]; then + set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") + eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" + eval $eval_cmd + status_check $? "${eval_cmd}" "${status_log}" + fi + # run export model + if [ ${run_export} != "null" ]; then + # run export model + save_infer_path="${save_log}" + export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}" + eval $export_cmd + status_check $? "${export_cmd}" "${status_log}" + + #run inference + eval $env + save_infer_path="${save_log}" + func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + eval "unset CUDA_VISIBLE_DEVICES" + fi + done # done with: for trainer in ${trainer_list[*]}; do + done # done with: for autocast in ${autocast_list[*]}; do + done # done with: for gpu in ${gpu_list[*]}; do +fi # end if [ ${MODE} = "infer" ]; then