formate code
This commit is contained in:
parent
91f6f24385
commit
b626aa3e41
|
@ -257,6 +257,7 @@ class SimpleReader(object):
|
||||||
norm_img = process_image_srn(
|
norm_img = process_image_srn(
|
||||||
img=img,
|
img=img,
|
||||||
image_shape=self.image_shape,
|
image_shape=self.image_shape,
|
||||||
|
char_ops=self.char_ops,
|
||||||
num_heads=self.num_heads,
|
num_heads=self.num_heads,
|
||||||
max_text_length=self.max_text_length)
|
max_text_length=self.max_text_length)
|
||||||
else:
|
else:
|
||||||
|
|
|
@ -4,9 +4,6 @@ import numpy as np
|
||||||
import paddle.fluid as fluid
|
import paddle.fluid as fluid
|
||||||
import paddle.fluid.layers as layers
|
import paddle.fluid.layers as layers
|
||||||
|
|
||||||
# Set seed for CE
|
|
||||||
dropout_seed = None
|
|
||||||
|
|
||||||
encoder_data_input_fields = (
|
encoder_data_input_fields = (
|
||||||
"src_word",
|
"src_word",
|
||||||
"src_pos",
|
"src_pos",
|
||||||
|
@ -186,10 +183,7 @@ def multi_head_attention(queries,
|
||||||
weights = layers.softmax(product)
|
weights = layers.softmax(product)
|
||||||
if dropout_rate:
|
if dropout_rate:
|
||||||
weights = layers.dropout(
|
weights = layers.dropout(
|
||||||
weights,
|
weights, dropout_prob=dropout_rate, seed=None, is_test=False)
|
||||||
dropout_prob=dropout_rate,
|
|
||||||
seed=dropout_seed,
|
|
||||||
is_test=False)
|
|
||||||
out = layers.matmul(weights, v)
|
out = layers.matmul(weights, v)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
@ -221,7 +215,7 @@ def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
|
||||||
act="relu")
|
act="relu")
|
||||||
if dropout_rate:
|
if dropout_rate:
|
||||||
hidden = layers.dropout(
|
hidden = layers.dropout(
|
||||||
hidden, dropout_prob=dropout_rate, seed=dropout_seed, is_test=False)
|
hidden, dropout_prob=dropout_rate, seed=None, is_test=False)
|
||||||
out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
|
out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
@ -245,10 +239,7 @@ def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
|
||||||
elif cmd == "d": # add dropout
|
elif cmd == "d": # add dropout
|
||||||
if dropout_rate:
|
if dropout_rate:
|
||||||
out = layers.dropout(
|
out = layers.dropout(
|
||||||
out,
|
out, dropout_prob=dropout_rate, seed=None, is_test=False)
|
||||||
dropout_prob=dropout_rate,
|
|
||||||
seed=dropout_seed,
|
|
||||||
is_test=False)
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
@ -272,9 +263,8 @@ def prepare_encoder(
|
||||||
This module is used at the bottom of the encoder stacks.
|
This module is used at the bottom of the encoder stacks.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
src_word_emb = src_word # layers.concat(res,axis=1)
|
src_word_emb = src_word
|
||||||
src_word_emb = layers.cast(src_word_emb, 'float32')
|
src_word_emb = layers.cast(src_word_emb, 'float32')
|
||||||
# print("src_word_emb",src_word_emb)
|
|
||||||
|
|
||||||
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
|
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
|
||||||
src_pos_enc = layers.embedding(
|
src_pos_enc = layers.embedding(
|
||||||
|
@ -285,7 +275,7 @@ def prepare_encoder(
|
||||||
src_pos_enc.stop_gradient = True
|
src_pos_enc.stop_gradient = True
|
||||||
enc_input = src_word_emb + src_pos_enc
|
enc_input = src_word_emb + src_pos_enc
|
||||||
return layers.dropout(
|
return layers.dropout(
|
||||||
enc_input, dropout_prob=dropout_rate, seed=dropout_seed,
|
enc_input, dropout_prob=dropout_rate, seed=None,
|
||||||
is_test=False) if dropout_rate else enc_input
|
is_test=False) if dropout_rate else enc_input
|
||||||
|
|
||||||
|
|
||||||
|
@ -310,7 +300,7 @@ def prepare_decoder(src_word,
|
||||||
param_attr=fluid.ParamAttr(
|
param_attr=fluid.ParamAttr(
|
||||||
name=word_emb_param_name,
|
name=word_emb_param_name,
|
||||||
initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
|
initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
|
||||||
# print("target_word_emb",src_word_emb)
|
|
||||||
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
|
src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
|
||||||
src_pos_enc = layers.embedding(
|
src_pos_enc = layers.embedding(
|
||||||
src_pos,
|
src_pos,
|
||||||
|
@ -320,7 +310,7 @@ def prepare_decoder(src_word,
|
||||||
src_pos_enc.stop_gradient = True
|
src_pos_enc.stop_gradient = True
|
||||||
enc_input = src_word_emb + src_pos_enc
|
enc_input = src_word_emb + src_pos_enc
|
||||||
return layers.dropout(
|
return layers.dropout(
|
||||||
enc_input, dropout_prob=dropout_rate, seed=dropout_seed,
|
enc_input, dropout_prob=dropout_rate, seed=None,
|
||||||
is_test=False) if dropout_rate else enc_input
|
is_test=False) if dropout_rate else enc_input
|
||||||
|
|
||||||
|
|
||||||
|
@ -465,12 +455,8 @@ def wrap_encoder(src_vocab_size,
|
||||||
img, src_pos, src_slf_attn_bias = enc_inputs
|
img, src_pos, src_slf_attn_bias = enc_inputs
|
||||||
img
|
img
|
||||||
"""
|
"""
|
||||||
if enc_inputs is None:
|
|
||||||
# This is used to implement independent encoder program in inference.
|
src_word, src_pos, src_slf_attn_bias = enc_inputs #
|
||||||
src_word, src_pos, src_slf_attn_bias = make_all_inputs(
|
|
||||||
encoder_data_input_fields)
|
|
||||||
else:
|
|
||||||
src_word, src_pos, src_slf_attn_bias = enc_inputs #
|
|
||||||
|
|
||||||
enc_input = prepare_decoder(
|
enc_input = prepare_decoder(
|
||||||
src_word,
|
src_word,
|
||||||
|
|
Loading…
Reference in New Issue