add rec_nrtr
This commit is contained in:
parent
6127aad993
commit
b6f0a90366
|
@ -0,0 +1,100 @@
|
|||
Global:
|
||||
use_gpu: True
|
||||
epoch_num: 21
|
||||
log_smooth_window: 20
|
||||
print_batch_step: 10
|
||||
save_model_dir: ./output/rec/nrtr_final/
|
||||
save_epoch_step: 1
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
cal_metric_during_train: True
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
||||
infer_img: doc/imgs_words_en/word_10.png
|
||||
# for data or label process
|
||||
character_dict_path:
|
||||
character_type: EN_symbol
|
||||
max_text_length: 25
|
||||
infer_mode: False
|
||||
use_space_char: True
|
||||
save_res_path: ./output/rec/predicts_nrtr.txt
|
||||
|
||||
Optimizer:
|
||||
name: Adam
|
||||
beta1: 0.9
|
||||
beta2: 0.99
|
||||
clip_norm: 5.0
|
||||
lr:
|
||||
name: Cosine
|
||||
learning_rate: 0.0005
|
||||
warmup_epoch: 2
|
||||
regularizer:
|
||||
name: 'L2'
|
||||
factor: 0.
|
||||
|
||||
Architecture:
|
||||
model_type: rec
|
||||
algorithm: NRTR
|
||||
in_channels: 1
|
||||
Transform:
|
||||
Backbone:
|
||||
name: MTB
|
||||
cnn_num: 2
|
||||
Head:
|
||||
name: TransformerOptim
|
||||
d_model: 512
|
||||
num_encoder_layers: 6
|
||||
beam_size: -1 # When Beam size is greater than 0, it means to use beam search when evaluation.
|
||||
|
||||
|
||||
Loss:
|
||||
name: NRTRLoss
|
||||
smoothing: True
|
||||
|
||||
PostProcess:
|
||||
name: NRTRLabelDecode
|
||||
|
||||
Metric:
|
||||
name: RecMetric
|
||||
main_indicator: acc
|
||||
|
||||
Train:
|
||||
dataset:
|
||||
name: LMDBDataSet
|
||||
data_dir: /paddle/data/ocr_data/training/
|
||||
transforms:
|
||||
- NRTRDecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- NRTRLabelEncode: # Class handling label
|
||||
- PILResize:
|
||||
image_shape: [100, 32]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: True
|
||||
batch_size_per_card: 512
|
||||
drop_last: True
|
||||
num_workers: 8
|
||||
|
||||
Eval:
|
||||
dataset:
|
||||
name: LMDBDataSet
|
||||
data_dir: /paddle/data/ocr_data/evaluation/
|
||||
transforms:
|
||||
- NRTRDecodeImage: # load image
|
||||
img_mode: BGR
|
||||
channel_first: False
|
||||
- NRTRLabelEncode: # Class handling label
|
||||
- PILResize:
|
||||
image_shape: [100, 32]
|
||||
- KeepKeys:
|
||||
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
|
||||
loader:
|
||||
shuffle: False
|
||||
drop_last: False
|
||||
batch_size_per_card: 256
|
||||
num_workers: 1
|
||||
use_shared_memory: False
|
|
@ -159,6 +159,34 @@ class BaseRecLabelEncode(object):
|
|||
return text_list
|
||||
|
||||
|
||||
class NRTRLabelEncode(BaseRecLabelEncode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self,
|
||||
max_text_length,
|
||||
character_dict_path=None,
|
||||
character_type='EN_symbol',
|
||||
use_space_char=False,
|
||||
**kwargs):
|
||||
|
||||
super(NRTRLabelEncode,
|
||||
self).__init__(max_text_length, character_dict_path,
|
||||
character_type, use_space_char)
|
||||
def __call__(self, data):
|
||||
text = data['label']
|
||||
text = self.encode(text)
|
||||
if text is None:
|
||||
return None
|
||||
data['length'] = np.array(len(text))
|
||||
text.insert(0, 2)
|
||||
text.append(3)
|
||||
text = text + [0] * (self.max_text_len - len(text))
|
||||
data['label'] = np.array(text)
|
||||
return data
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = ['blank','<unk>','<s>','</s>'] + dict_character
|
||||
return dict_character
|
||||
|
||||
class CTCLabelEncode(BaseRecLabelEncode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
|
|
|
@ -26,12 +26,13 @@ def build_head(config):
|
|||
from .rec_ctc_head import CTCHead
|
||||
from .rec_att_head import AttentionHead
|
||||
from .rec_srn_head import SRNHead
|
||||
|
||||
from .rec_nrtr_optim_head import TransformerOptim
|
||||
|
||||
# cls head
|
||||
from .cls_head import ClsHead
|
||||
support_dict = [
|
||||
'DBHead', 'EASTHead', 'SASTHead', 'CTCHead', 'ClsHead', 'AttentionHead',
|
||||
'SRNHead', 'PGHead']
|
||||
'SRNHead', 'PGHead', 'TransformerOptim']
|
||||
|
||||
|
||||
module_name = config.pop('name')
|
||||
|
|
|
@ -0,0 +1,365 @@
|
|||
import paddle
|
||||
from paddle import nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn import Linear
|
||||
from paddle.nn.initializer import XavierUniform as xavier_uniform_
|
||||
from paddle.nn.initializer import Constant as constant_
|
||||
from paddle.nn.initializer import XavierNormal as xavier_normal_
|
||||
|
||||
zeros_ = constant_(value=0.)
|
||||
ones_ = constant_(value=1.)
|
||||
|
||||
class MultiheadAttention(nn.Layer):
|
||||
r"""Allows the model to jointly attend to information
|
||||
from different representation subspaces.
|
||||
See reference: Attention Is All You Need
|
||||
|
||||
.. math::
|
||||
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||||
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model
|
||||
num_heads: parallel attention layers, or heads
|
||||
|
||||
Examples::
|
||||
|
||||
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
"""
|
||||
|
||||
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False):
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
||||
self.scaling = self.head_dim ** -0.5
|
||||
|
||||
self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = self.create_parameter(
|
||||
shape=(1, 1, embed_dim), default_initializer=zeros_)
|
||||
self.add_parameter("bias_k", self.bias_k)
|
||||
self.bias_v = self.create_parameter(
|
||||
shape=(1, 1, embed_dim), default_initializer=zeros_)
|
||||
self.add_parameter("bias_v", self.bias_v)
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
self.conv1 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
||||
self.conv2 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim * 2, kernel_size=(1, 1))
|
||||
self.conv3 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim * 3, kernel_size=(1, 1))
|
||||
|
||||
def _reset_parameters(self):
|
||||
|
||||
|
||||
xavier_uniform_(self.out_proj.weight)
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def forward(self, query, key, value, key_padding_mask=None, incremental_state=None,
|
||||
need_weights=True, static_kv=False, attn_mask=None, qkv_ = [False,False,False]):
|
||||
"""
|
||||
Inputs of forward function
|
||||
query: [target length, batch size, embed dim]
|
||||
key: [sequence length, batch size, embed dim]
|
||||
value: [sequence length, batch size, embed dim]
|
||||
key_padding_mask: if True, mask padding based on batch size
|
||||
incremental_state: if provided, previous time steps are cashed
|
||||
need_weights: output attn_output_weights
|
||||
static_kv: key and value are static
|
||||
|
||||
Outputs of forward function
|
||||
attn_output: [target length, batch size, embed dim]
|
||||
attn_output_weights: [batch size, target length, sequence length]
|
||||
"""
|
||||
qkv_same = qkv_[0]
|
||||
kv_same = qkv_[1]
|
||||
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
assert embed_dim == self.embed_dim
|
||||
assert list(query.shape) == [tgt_len, bsz, embed_dim]
|
||||
assert key.shape == value.shape
|
||||
|
||||
if qkv_same:
|
||||
# self-attention
|
||||
q, k, v = self._in_proj_qkv(query)
|
||||
elif kv_same:
|
||||
# encoder-decoder attention
|
||||
q = self._in_proj_q(query)
|
||||
if key is None:
|
||||
assert value is None
|
||||
k = v = None
|
||||
else:
|
||||
k, v = self._in_proj_kv(key)
|
||||
else:
|
||||
q = self._in_proj_q(query)
|
||||
k = self._in_proj_k(key)
|
||||
v = self._in_proj_v(value)
|
||||
q *= self.scaling
|
||||
|
||||
if self.bias_k is not None:
|
||||
assert self.bias_v is not None
|
||||
self.bias_k = paddle.concat([self.bias_k for i in range(bsz)],axis=1)
|
||||
self.bias_v = paddle.concat([self.bias_v for i in range(bsz)],axis=1)
|
||||
k = paddle.concat([k, self.bias_k])
|
||||
v = paddle.concat([v, self.bias_v])
|
||||
if attn_mask is not None:
|
||||
attn_mask = paddle.concat([attn_mask, paddle.zeros([attn_mask.shape[0], 1],dtype=attn_mask.dtype)], axis=1)
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = paddle.concat(
|
||||
[key_padding_mask,paddle.zeros([key_padding_mask.shape[0], 1],dtype=key_padding_mask.dtype)], axis=1)
|
||||
|
||||
q = q.reshape([tgt_len, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
|
||||
if k is not None:
|
||||
k = k.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
|
||||
if v is not None:
|
||||
v = v.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
|
||||
|
||||
|
||||
|
||||
src_len = k.shape[1]
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape[0] == bsz
|
||||
assert key_padding_mask.shape[1] == src_len
|
||||
|
||||
if self.add_zero_attn:
|
||||
src_len += 1
|
||||
k = paddle.concat([k, paddle.zeros((k.shape[0], 1) + k.shape[2:],dtype=k.dtype)], axis=1)
|
||||
v = paddle.concat([v, paddle.zeros((v.shape[0], 1) + v.shape[2:],dtype=v.dtype)], axis=1)
|
||||
if attn_mask is not None:
|
||||
attn_mask = paddle.concat([attn_mask, paddle.zeros([attn_mask.shape[0], 1],dtype=attn_mask.dtype)], axis=1)
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = paddle.concat(
|
||||
[key_padding_mask, paddle.zeros([key_padding_mask.shape[0], 1],dtype=key_padding_mask.dtype)], axis=1)
|
||||
attn_output_weights = paddle.bmm(q, k.transpose([0,2,1]))
|
||||
assert list(attn_output_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
attn_output_weights += attn_mask
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
|
||||
key = key_padding_mask.unsqueeze(1).unsqueeze(2).astype('float32')
|
||||
y = paddle.full(shape=key.shape, dtype='float32', fill_value='-inf')
|
||||
y = paddle.where(key==0.,key, y)
|
||||
attn_output_weights += y
|
||||
attn_output_weights = attn_output_weights.reshape([bsz*self.num_heads, tgt_len, src_len])
|
||||
|
||||
attn_output_weights = F.softmax(
|
||||
attn_output_weights.astype('float32'), axis=-1,
|
||||
dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16 else attn_output_weights.dtype)
|
||||
attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training)
|
||||
|
||||
attn_output = paddle.bmm(attn_output_weights, v)
|
||||
assert list(attn_output.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
||||
attn_output = attn_output.transpose([1, 0,2]).reshape([tgt_len, bsz, embed_dim])
|
||||
attn_output = self.out_proj(attn_output)
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
|
||||
attn_output_weights = attn_output_weights.sum(axis=1) / self.num_heads
|
||||
else:
|
||||
attn_output_weights = None
|
||||
|
||||
return attn_output, attn_output_weights
|
||||
|
||||
def _in_proj_qkv(self, query):
|
||||
query = query.transpose([1, 2, 0])
|
||||
query = paddle.unsqueeze(query, axis=2)
|
||||
res = self.conv3(query)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res.chunk(3, axis=-1)
|
||||
|
||||
def _in_proj_kv(self, key):
|
||||
key = key.transpose([1, 2, 0])
|
||||
key = paddle.unsqueeze(key, axis=2)
|
||||
res = self.conv2(key)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res.chunk(2, axis=-1)
|
||||
|
||||
def _in_proj_q(self, query):
|
||||
query = query.transpose([1, 2, 0])
|
||||
query = paddle.unsqueeze(query, axis=2)
|
||||
res = self.conv1(query)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res
|
||||
|
||||
def _in_proj_k(self, key):
|
||||
|
||||
key = key.transpose([1, 2, 0])
|
||||
key = paddle.unsqueeze(key, axis=2)
|
||||
res = self.conv1(key)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res
|
||||
|
||||
def _in_proj_v(self, value):
|
||||
|
||||
value = value.transpose([1,2,0])#(1, 2, 0)
|
||||
value = paddle.unsqueeze(value, axis=2)
|
||||
res = self.conv1(value)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res
|
||||
|
||||
|
||||
|
||||
class MultiheadAttentionOptim(nn.Layer):
|
||||
r"""Allows the model to jointly attend to information
|
||||
from different representation subspaces.
|
||||
See reference: Attention Is All You Need
|
||||
|
||||
.. math::
|
||||
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||||
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
|
||||
|
||||
Args:
|
||||
embed_dim: total dimension of the model
|
||||
num_heads: parallel attention layers, or heads
|
||||
|
||||
Examples::
|
||||
|
||||
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
"""
|
||||
|
||||
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False):
|
||||
super(MultiheadAttentionOptim, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
||||
self.scaling = self.head_dim ** -0.5
|
||||
|
||||
self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
self.conv1 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
||||
self.conv2 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
||||
self.conv3 = paddle.nn.Conv2D(in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
|
||||
|
||||
def _reset_parameters(self):
|
||||
|
||||
|
||||
xavier_uniform_(self.out_proj.weight)
|
||||
|
||||
|
||||
def forward(self, query, key, value, key_padding_mask=None, incremental_state=None,
|
||||
need_weights=True, static_kv=False, attn_mask=None):
|
||||
"""
|
||||
Inputs of forward function
|
||||
query: [target length, batch size, embed dim]
|
||||
key: [sequence length, batch size, embed dim]
|
||||
value: [sequence length, batch size, embed dim]
|
||||
key_padding_mask: if True, mask padding based on batch size
|
||||
incremental_state: if provided, previous time steps are cashed
|
||||
need_weights: output attn_output_weights
|
||||
static_kv: key and value are static
|
||||
|
||||
Outputs of forward function
|
||||
attn_output: [target length, batch size, embed dim]
|
||||
attn_output_weights: [batch size, target length, sequence length]
|
||||
"""
|
||||
|
||||
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
assert embed_dim == self.embed_dim
|
||||
assert list(query.shape) == [tgt_len, bsz, embed_dim]
|
||||
assert key.shape == value.shape
|
||||
|
||||
q = self._in_proj_q(query)
|
||||
k = self._in_proj_k(key)
|
||||
v = self._in_proj_v(value)
|
||||
q *= self.scaling
|
||||
|
||||
|
||||
q = q.reshape([tgt_len, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
|
||||
k = k.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
|
||||
v = v.reshape([-1, bsz * self.num_heads, self.head_dim]).transpose([1, 0, 2])
|
||||
|
||||
|
||||
src_len = k.shape[1]
|
||||
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape[0] == bsz
|
||||
assert key_padding_mask.shape[1] == src_len
|
||||
|
||||
|
||||
attn_output_weights = paddle.bmm(q, k.transpose([0,2,1]))
|
||||
assert list(attn_output_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
attn_output_weights += attn_mask
|
||||
if key_padding_mask is not None:
|
||||
attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
|
||||
key = key_padding_mask.unsqueeze(1).unsqueeze(2).astype('float32')
|
||||
|
||||
y = paddle.full(shape=key.shape, dtype='float32', fill_value='-inf')
|
||||
|
||||
y = paddle.where(key==0.,key, y)
|
||||
|
||||
attn_output_weights += y
|
||||
attn_output_weights = attn_output_weights.reshape([bsz*self.num_heads, tgt_len, src_len])
|
||||
|
||||
attn_output_weights = F.softmax(
|
||||
attn_output_weights.astype('float32'), axis=-1,
|
||||
dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16 else attn_output_weights.dtype)
|
||||
attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training)
|
||||
|
||||
attn_output = paddle.bmm(attn_output_weights, v)
|
||||
assert list(attn_output.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
|
||||
attn_output = attn_output.transpose([1, 0,2]).reshape([tgt_len, bsz, embed_dim])
|
||||
attn_output = self.out_proj(attn_output)
|
||||
|
||||
if need_weights:
|
||||
# average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.reshape([bsz, self.num_heads, tgt_len, src_len])
|
||||
attn_output_weights = attn_output_weights.sum(axis=1) / self.num_heads
|
||||
else:
|
||||
attn_output_weights = None
|
||||
|
||||
return attn_output, attn_output_weights
|
||||
|
||||
|
||||
def _in_proj_q(self, query):
|
||||
query = query.transpose([1, 2, 0])
|
||||
query = paddle.unsqueeze(query, axis=2)
|
||||
res = self.conv1(query)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res
|
||||
|
||||
def _in_proj_k(self, key):
|
||||
|
||||
key = key.transpose([1, 2, 0])
|
||||
key = paddle.unsqueeze(key, axis=2)
|
||||
res = self.conv2(key)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res
|
||||
|
||||
def _in_proj_v(self, value):
|
||||
|
||||
value = value.transpose([1,2,0])#(1, 2, 0)
|
||||
value = paddle.unsqueeze(value, axis=2)
|
||||
res = self.conv3(value)
|
||||
res = paddle.squeeze(res, axis=2)
|
||||
res = res.transpose([2, 0, 1])
|
||||
return res
|
|
@ -0,0 +1,779 @@
|
|||
import math
|
||||
import paddle
|
||||
import copy
|
||||
from paddle import nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn import LayerList
|
||||
from paddle.nn.initializer import XavierNormal as xavier_uniform_
|
||||
from paddle.nn import Dropout, Linear, LayerNorm, Conv2D
|
||||
import numpy as np
|
||||
from ppocr.modeling.heads.multiheadAttention import MultiheadAttentionOptim
|
||||
from paddle.nn.initializer import Constant as constant_
|
||||
from paddle.nn.initializer import XavierNormal as xavier_normal_
|
||||
|
||||
zeros_ = constant_(value=0.)
|
||||
ones_ = constant_(value=1.)
|
||||
|
||||
class TransformerOptim(nn.Layer):
|
||||
r"""A transformer model. User is able to modify the attributes as needed. The architechture
|
||||
is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
|
||||
Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
|
||||
Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
|
||||
Processing Systems, pages 6000-6010.
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the encoder/decoder inputs (default=512).
|
||||
nhead: the number of heads in the multiheadattention models (default=8).
|
||||
num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
|
||||
num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
custom_encoder: custom encoder (default=None).
|
||||
custom_decoder: custom decoder (default=None).
|
||||
|
||||
Examples::
|
||||
>>> transformer_model = nn.Transformer(src_vocab, tgt_vocab)
|
||||
>>> transformer_model = nn.Transformer(src_vocab, tgt_vocab, nhead=16, num_encoder_layers=12)
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6, beam_size=0,
|
||||
num_decoder_layers=6, dim_feedforward=1024, attention_dropout_rate=0.0, residual_dropout_rate=0.1,
|
||||
custom_encoder=None, custom_decoder=None,in_channels=0,out_channels=0,dst_vocab_size=99,scale_embedding=True):
|
||||
super(TransformerOptim, self).__init__()
|
||||
self.embedding = Embeddings(
|
||||
d_model=d_model,
|
||||
vocab=dst_vocab_size,
|
||||
padding_idx=0,
|
||||
scale_embedding=scale_embedding
|
||||
)
|
||||
self.positional_encoding = PositionalEncoding(
|
||||
dropout=residual_dropout_rate,
|
||||
dim=d_model,
|
||||
)
|
||||
if custom_encoder is not None:
|
||||
self.encoder = custom_encoder
|
||||
else:
|
||||
if num_encoder_layers > 0 :
|
||||
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate)
|
||||
|
||||
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers)
|
||||
else:
|
||||
self.encoder = None
|
||||
|
||||
if custom_decoder is not None:
|
||||
self.decoder = custom_decoder
|
||||
else:
|
||||
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, attention_dropout_rate, residual_dropout_rate)
|
||||
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers)
|
||||
|
||||
self._reset_parameters()
|
||||
self.beam_size = beam_size
|
||||
self.d_model = d_model
|
||||
self.nhead = nhead
|
||||
self.tgt_word_prj = nn.Linear(d_model, dst_vocab_size, bias_attr=False)
|
||||
w0 = np.random.normal(0.0, d_model**-0.5,(d_model, dst_vocab_size)).astype(np.float32)
|
||||
self.tgt_word_prj.weight.set_value(w0)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
|
||||
def _init_weights(self, m):
|
||||
|
||||
if isinstance(m, nn.Conv2D):
|
||||
xavier_normal_(m.weight)
|
||||
if m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
|
||||
def forward_train(self,src,tgt):
|
||||
tgt = tgt[:, :-1]
|
||||
|
||||
|
||||
|
||||
tgt_key_padding_mask = self.generate_padding_mask(tgt)
|
||||
tgt = self.embedding(tgt).transpose([1, 0, 2])
|
||||
tgt = self.positional_encoding(tgt)
|
||||
tgt_mask = self.generate_square_subsequent_mask(tgt.shape[0])
|
||||
|
||||
if self.encoder is not None :
|
||||
src = self.positional_encoding(src.transpose([1, 0, 2]))
|
||||
memory = self.encoder(src)
|
||||
else:
|
||||
memory = src.squeeze(2).transpose([2, 0, 1])
|
||||
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=None,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=None)
|
||||
output = output.transpose([1, 0, 2])
|
||||
logit = self.tgt_word_prj(output)
|
||||
return logit
|
||||
|
||||
def forward(self, src, tgt=None):
|
||||
r"""Take in and process masked source/target sequences.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
tgt: the sequence to the decoder (required).
|
||||
src_mask: the additive mask for the src sequence (optional).
|
||||
tgt_mask: the additive mask for the tgt sequence (optional).
|
||||
memory_mask: the additive mask for the encoder output (optional).
|
||||
src_key_padding_mask: the ByteTensor mask for src keys per batch (optional).
|
||||
tgt_key_padding_mask: the ByteTensor mask for tgt keys per batch (optional).
|
||||
memory_key_padding_mask: the ByteTensor mask for memory keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
- src: :math:`(S, N, E)`.
|
||||
- tgt: :math:`(T, N, E)`.
|
||||
- src_mask: :math:`(S, S)`.
|
||||
- tgt_mask: :math:`(T, T)`.
|
||||
- memory_mask: :math:`(T, S)`.
|
||||
- src_key_padding_mask: :math:`(N, S)`.
|
||||
- tgt_key_padding_mask: :math:`(N, T)`.
|
||||
- memory_key_padding_mask: :math:`(N, S)`.
|
||||
|
||||
Note: [src/tgt/memory]_mask should be filled with
|
||||
float('-inf') for the masked positions and float(0.0) else. These masks
|
||||
ensure that predictions for position i depend only on the unmasked positions
|
||||
j and are applied identically for each sequence in a batch.
|
||||
[src/tgt/memory]_key_padding_mask should be a ByteTensor where True values are positions
|
||||
that should be masked with float('-inf') and False values will be unchanged.
|
||||
This mask ensures that no information will be taken from position i if
|
||||
it is masked, and has a separate mask for each sequence in a batch.
|
||||
|
||||
- output: :math:`(T, N, E)`.
|
||||
|
||||
Note: Due to the multi-head attention architecture in the transformer model,
|
||||
the output sequence length of a transformer is same as the input sequence
|
||||
(i.e. target) length of the decode.
|
||||
|
||||
where S is the source sequence length, T is the target sequence length, N is the
|
||||
batch size, E is the feature number
|
||||
|
||||
Examples:
|
||||
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
|
||||
"""
|
||||
if tgt is not None:
|
||||
return self.forward_train(src, tgt)
|
||||
else:
|
||||
if self.beam_size > 0 :
|
||||
return self.forward_beam(src)
|
||||
else:
|
||||
return self.forward_test(src)
|
||||
|
||||
def forward_test(self, src):
|
||||
bs = src.shape[0]
|
||||
if self.encoder is not None :
|
||||
src = self.positional_encoding(src.transpose([1, 0, 2]))
|
||||
memory = self.encoder(src)
|
||||
else:
|
||||
memory = src.squeeze(2).transpose([2, 0, 1])
|
||||
dec_seq = paddle.full((bs,1), 2, dtype=paddle.int64)
|
||||
for len_dec_seq in range(1, 25):
|
||||
src_enc = memory.clone()
|
||||
tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
|
||||
dec_seq_embed = self.embedding(dec_seq).transpose([1, 0, 2])
|
||||
dec_seq_embed = self.positional_encoding(dec_seq_embed)
|
||||
tgt_mask = self.generate_square_subsequent_mask(dec_seq_embed.shape[0])
|
||||
output = self.decoder(dec_seq_embed, src_enc, tgt_mask=tgt_mask, memory_mask=None,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=None)
|
||||
dec_output = output.transpose([1, 0, 2])
|
||||
|
||||
dec_output = dec_output[:, -1, :] # Pick the last step: (bh * bm) * d_h
|
||||
word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
|
||||
word_prob = word_prob.reshape([1, bs, -1])
|
||||
preds_idx = word_prob.argmax(axis=2)
|
||||
|
||||
if paddle.equal_all(preds_idx[-1],paddle.full(preds_idx[-1].shape,3,dtype='int64')):
|
||||
break
|
||||
|
||||
preds_prob = word_prob.max(axis=2)
|
||||
dec_seq = paddle.concat([dec_seq,preds_idx.reshape([-1,1])],axis=1)
|
||||
|
||||
return dec_seq
|
||||
|
||||
def forward_beam(self,images):
|
||||
|
||||
''' Translation work in one batch '''
|
||||
|
||||
def get_inst_idx_to_tensor_position_map(inst_idx_list):
|
||||
''' Indicate the position of an instance in a tensor. '''
|
||||
return {inst_idx: tensor_position for tensor_position, inst_idx in enumerate(inst_idx_list)}
|
||||
|
||||
def collect_active_part(beamed_tensor, curr_active_inst_idx, n_prev_active_inst, n_bm):
|
||||
''' Collect tensor parts associated to active instances. '''
|
||||
|
||||
_, *d_hs = beamed_tensor.shape
|
||||
n_curr_active_inst = len(curr_active_inst_idx)
|
||||
new_shape = (n_curr_active_inst * n_bm, *d_hs)
|
||||
|
||||
beamed_tensor = beamed_tensor.reshape([n_prev_active_inst, -1])#contiguous()
|
||||
beamed_tensor = beamed_tensor.index_select(paddle.to_tensor(curr_active_inst_idx),axis=0)
|
||||
beamed_tensor = beamed_tensor.reshape([*new_shape])
|
||||
|
||||
return beamed_tensor
|
||||
|
||||
|
||||
def collate_active_info(
|
||||
src_enc, inst_idx_to_position_map, active_inst_idx_list):
|
||||
# Sentences which are still active are collected,
|
||||
# so the decoder will not run on completed sentences.
|
||||
|
||||
n_prev_active_inst = len(inst_idx_to_position_map)
|
||||
active_inst_idx = [inst_idx_to_position_map[k] for k in active_inst_idx_list]
|
||||
active_inst_idx = paddle.to_tensor(active_inst_idx, dtype='int64')
|
||||
active_src_enc = collect_active_part(src_enc.transpose([1, 0, 2]), active_inst_idx, n_prev_active_inst, n_bm).transpose([1, 0, 2])
|
||||
active_inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)
|
||||
return active_src_enc, active_inst_idx_to_position_map
|
||||
|
||||
def beam_decode_step(
|
||||
inst_dec_beams, len_dec_seq, enc_output, inst_idx_to_position_map, n_bm, memory_key_padding_mask):
|
||||
''' Decode and update beam status, and then return active beam idx '''
|
||||
|
||||
def prepare_beam_dec_seq(inst_dec_beams, len_dec_seq):
|
||||
dec_partial_seq = [b.get_current_state() for b in inst_dec_beams if not b.done]
|
||||
dec_partial_seq = paddle.stack(dec_partial_seq)
|
||||
|
||||
dec_partial_seq = dec_partial_seq.reshape([-1, len_dec_seq])
|
||||
return dec_partial_seq
|
||||
|
||||
def prepare_beam_memory_key_padding_mask(inst_dec_beams, memory_key_padding_mask, n_bm):
|
||||
keep = []
|
||||
for idx in (memory_key_padding_mask):
|
||||
if not inst_dec_beams[idx].done:
|
||||
keep.append(idx)
|
||||
memory_key_padding_mask = memory_key_padding_mask[paddle.to_tensor(keep)]
|
||||
len_s = memory_key_padding_mask.shape[-1]
|
||||
n_inst = memory_key_padding_mask.shape[0]
|
||||
memory_key_padding_mask = paddle.concat([memory_key_padding_mask for i in range(n_bm)],axis=1)
|
||||
memory_key_padding_mask = memory_key_padding_mask.reshape([n_inst * n_bm, len_s])#repeat(1, n_bm)
|
||||
return memory_key_padding_mask
|
||||
|
||||
def predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask):
|
||||
tgt_key_padding_mask = self.generate_padding_mask(dec_seq)
|
||||
dec_seq = self.embedding(dec_seq).transpose([1, 0, 2])
|
||||
dec_seq = self.positional_encoding(dec_seq)
|
||||
tgt_mask = self.generate_square_subsequent_mask(dec_seq.shape[0])
|
||||
dec_output = self.decoder(
|
||||
dec_seq, enc_output,
|
||||
tgt_mask=tgt_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask,
|
||||
).transpose([1, 0, 2])
|
||||
dec_output = dec_output[:, -1, :] # Pick the last step: (bh * bm) * d_h
|
||||
word_prob = F.log_softmax(self.tgt_word_prj(dec_output), axis=1)
|
||||
word_prob = word_prob.reshape([n_active_inst, n_bm, -1])
|
||||
return word_prob
|
||||
|
||||
def collect_active_inst_idx_list(inst_beams, word_prob, inst_idx_to_position_map):
|
||||
active_inst_idx_list = []
|
||||
for inst_idx, inst_position in inst_idx_to_position_map.items():
|
||||
is_inst_complete = inst_beams[inst_idx].advance(word_prob[inst_position])
|
||||
if not is_inst_complete:
|
||||
active_inst_idx_list += [inst_idx]
|
||||
|
||||
return active_inst_idx_list
|
||||
|
||||
n_active_inst = len(inst_idx_to_position_map)
|
||||
dec_seq = prepare_beam_dec_seq(inst_dec_beams, len_dec_seq)
|
||||
memory_key_padding_mask = None
|
||||
word_prob = predict_word(dec_seq, enc_output, n_active_inst, n_bm, memory_key_padding_mask)
|
||||
# Update the beam with predicted word prob information and collect incomplete instances
|
||||
active_inst_idx_list = collect_active_inst_idx_list(
|
||||
inst_dec_beams, word_prob, inst_idx_to_position_map)
|
||||
return active_inst_idx_list
|
||||
|
||||
def collect_hypothesis_and_scores(inst_dec_beams, n_best):
|
||||
all_hyp, all_scores = [], []
|
||||
for inst_idx in range(len(inst_dec_beams)):
|
||||
scores, tail_idxs = inst_dec_beams[inst_idx].sort_scores()
|
||||
all_scores += [scores[:n_best]]
|
||||
hyps = [inst_dec_beams[inst_idx].get_hypothesis(i) for i in tail_idxs[:n_best]]
|
||||
all_hyp += [hyps]
|
||||
return all_hyp, all_scores
|
||||
|
||||
with paddle.no_grad():
|
||||
#-- Encode
|
||||
|
||||
if self.encoder is not None :
|
||||
src = self.positional_encoding(images.transpose([1, 0, 2]))
|
||||
src_enc = self.encoder(src).transpose([1, 0, 2])
|
||||
else:
|
||||
src_enc = images.squeeze(2).transpose([0, 2, 1])
|
||||
|
||||
#-- Repeat data for beam search
|
||||
n_bm = self.beam_size
|
||||
n_inst, len_s, d_h = src_enc.shape
|
||||
src_enc = paddle.concat([src_enc for i in range(n_bm)],axis=1)
|
||||
src_enc = src_enc.reshape([n_inst * n_bm, len_s, d_h]).transpose([1, 0, 2])#repeat(1, n_bm, 1)
|
||||
#-- Prepare beams
|
||||
inst_dec_beams = [Beam(n_bm) for _ in range(n_inst)]
|
||||
|
||||
#-- Bookkeeping for active or not
|
||||
active_inst_idx_list = list(range(n_inst))
|
||||
inst_idx_to_position_map = get_inst_idx_to_tensor_position_map(active_inst_idx_list)
|
||||
#-- Decode
|
||||
for len_dec_seq in range(1, 25):
|
||||
src_enc_copy = src_enc.clone()
|
||||
active_inst_idx_list = beam_decode_step(
|
||||
inst_dec_beams, len_dec_seq, src_enc_copy, inst_idx_to_position_map, n_bm, None)
|
||||
if not active_inst_idx_list:
|
||||
break # all instances have finished their path to <EOS>
|
||||
src_enc, inst_idx_to_position_map = collate_active_info(
|
||||
src_enc_copy, inst_idx_to_position_map, active_inst_idx_list)
|
||||
batch_hyp, batch_scores = collect_hypothesis_and_scores(inst_dec_beams, 1)
|
||||
result_hyp = []
|
||||
for bs_hyp in batch_hyp:
|
||||
bs_hyp_pad =bs_hyp[0]+[3]*(25-len(bs_hyp[0]))
|
||||
result_hyp.append(bs_hyp_pad)
|
||||
return paddle.to_tensor(np.array(result_hyp),dtype=paddle.int64)
|
||||
|
||||
def generate_square_subsequent_mask(self, sz):
|
||||
r"""Generate a square mask for the sequence. The masked positions are filled with float('-inf').
|
||||
Unmasked positions are filled with float(0.0).
|
||||
"""
|
||||
mask = paddle.zeros([sz, sz],dtype='float32')
|
||||
mask_inf = paddle.triu(paddle.full(shape=[sz,sz], dtype='float32', fill_value='-inf'),diagonal=1)
|
||||
mask = mask+mask_inf
|
||||
return mask
|
||||
|
||||
def generate_padding_mask(self, x):
|
||||
padding_mask = x.equal(paddle.to_tensor(0,dtype=x.dtype))
|
||||
return padding_mask
|
||||
|
||||
def _reset_parameters(self):
|
||||
r"""Initiate parameters in the transformer model."""
|
||||
|
||||
for p in self.parameters():
|
||||
if p.dim() > 1:
|
||||
xavier_uniform_(p)
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Layer):
|
||||
r"""TransformerEncoder is a stack of N encoder layers
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
|
||||
>>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers)
|
||||
"""
|
||||
|
||||
def __init__(self, encoder_layer, num_layers):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
|
||||
|
||||
def forward(self, src):
|
||||
r"""Pass the input through the endocder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequnce to the encoder (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
output = src
|
||||
|
||||
for i in range(self.num_layers):
|
||||
output = self.layers[i](output, src_mask=None,
|
||||
src_key_padding_mask=None)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerDecoder(nn.Layer):
|
||||
r"""TransformerDecoder is a stack of N decoder layers
|
||||
|
||||
Args:
|
||||
decoder_layer: an instance of the TransformerDecoderLayer() class (required).
|
||||
num_layers: the number of sub-decoder-layers in the decoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
|
||||
Examples::
|
||||
>>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
|
||||
>>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers)
|
||||
"""
|
||||
|
||||
def __init__(self, decoder_layer, num_layers):
|
||||
super(TransformerDecoder, self).__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
|
||||
|
||||
def forward(self, tgt, memory, tgt_mask=None,
|
||||
memory_mask=None, tgt_key_padding_mask=None,
|
||||
memory_key_padding_mask=None):
|
||||
r"""Pass the inputs (and mask) through the decoder layer in turn.
|
||||
|
||||
Args:
|
||||
tgt: the sequence to the decoder (required).
|
||||
memory: the sequnce from the last layer of the encoder (required).
|
||||
tgt_mask: the mask for the tgt sequence (optional).
|
||||
memory_mask: the mask for the memory sequence (optional).
|
||||
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
||||
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
output = tgt
|
||||
for i in range(self.num_layers):
|
||||
output = self.layers[i](output, memory, tgt_mask=tgt_mask,
|
||||
memory_mask=memory_mask,
|
||||
tgt_key_padding_mask=tgt_key_padding_mask,
|
||||
memory_key_padding_mask=memory_key_padding_mask)
|
||||
|
||||
return output
|
||||
|
||||
class TransformerEncoderLayer(nn.Layer):
|
||||
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
|
||||
This standard encoder layer is based on the paper "Attention Is All You Need".
|
||||
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
||||
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
||||
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
||||
in a different way during application.
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the input (required).
|
||||
nhead: the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = nn.TransformerEncoderLayer(d_model, nhead)
|
||||
"""
|
||||
|
||||
def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1):
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)
|
||||
|
||||
self.conv1 = Conv2D(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1))
|
||||
self.conv2 = Conv2D(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1))
|
||||
|
||||
self.norm1 = LayerNorm(d_model)
|
||||
self.norm2 = LayerNorm(d_model)
|
||||
self.dropout1 = Dropout(residual_dropout_rate)
|
||||
self.dropout2 = Dropout(residual_dropout_rate)
|
||||
|
||||
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
||||
r"""Pass the input through the endocder layer.
|
||||
|
||||
Args:
|
||||
src: the sequnce to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
src2 = self.self_attn(src, src, src, attn_mask=src_mask,
|
||||
key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
|
||||
src = src.transpose([1, 2, 0])
|
||||
src = paddle.unsqueeze(src, 2)
|
||||
src2 = self.conv2(F.relu(self.conv1(src)))
|
||||
src2 = paddle.squeeze(src2, 2)
|
||||
src2 = src2.transpose([2, 0, 1])
|
||||
src = paddle.squeeze(src, 2)
|
||||
src = src.transpose([2, 0, 1])
|
||||
|
||||
src = src + self.dropout2(src2)
|
||||
src = self.norm2(src)
|
||||
return src
|
||||
|
||||
class TransformerDecoderLayer(nn.Layer):
|
||||
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
|
||||
This standard decoder layer is based on the paper "Attention Is All You Need".
|
||||
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
|
||||
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
|
||||
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
|
||||
in a different way during application.
|
||||
|
||||
Args:
|
||||
d_model: the number of expected features in the input (required).
|
||||
nhead: the number of heads in the multiheadattention models (required).
|
||||
dim_feedforward: the dimension of the feedforward network model (default=2048).
|
||||
dropout: the dropout value (default=0.1).
|
||||
|
||||
Examples::
|
||||
>>> decoder_layer = nn.TransformerDecoderLayer(d_model, nhead)
|
||||
"""
|
||||
|
||||
def __init__(self, d_model, nhead, dim_feedforward=2048, attention_dropout_rate=0.0, residual_dropout_rate=0.1):
|
||||
super(TransformerDecoderLayer, self).__init__()
|
||||
self.self_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)
|
||||
self.multihead_attn = MultiheadAttentionOptim(d_model, nhead, dropout=attention_dropout_rate)
|
||||
|
||||
self.conv1 = Conv2D(in_channels=d_model, out_channels=dim_feedforward, kernel_size=(1, 1))
|
||||
self.conv2 = Conv2D(in_channels=dim_feedforward, out_channels=d_model, kernel_size=(1, 1))
|
||||
|
||||
self.norm1 = LayerNorm(d_model)
|
||||
self.norm2 = LayerNorm(d_model)
|
||||
self.norm3 = LayerNorm(d_model)
|
||||
self.dropout1 = Dropout(residual_dropout_rate)
|
||||
self.dropout2 = Dropout(residual_dropout_rate)
|
||||
self.dropout3 = Dropout(residual_dropout_rate)
|
||||
|
||||
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
|
||||
tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
||||
r"""Pass the inputs (and mask) through the decoder layer.
|
||||
|
||||
Args:
|
||||
tgt: the sequence to the decoder layer (required).
|
||||
memory: the sequnce from the last layer of the encoder (required).
|
||||
tgt_mask: the mask for the tgt sequence (optional).
|
||||
memory_mask: the mask for the memory sequence (optional).
|
||||
tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
|
||||
memory_key_padding_mask: the mask for the memory keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
|
||||
key_padding_mask=tgt_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt = self.norm1(tgt)
|
||||
tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
|
||||
key_padding_mask=memory_key_padding_mask)[0]
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt = self.norm2(tgt)
|
||||
|
||||
# default
|
||||
tgt = tgt.transpose([1, 2, 0])
|
||||
tgt = paddle.unsqueeze(tgt, 2)
|
||||
tgt2 = self.conv2(F.relu(self.conv1(tgt)))
|
||||
tgt2 = paddle.squeeze(tgt2, 2)
|
||||
tgt2 = tgt2.transpose([2, 0, 1])
|
||||
tgt = paddle.squeeze(tgt, 2)
|
||||
tgt = tgt.transpose([2, 0, 1])
|
||||
|
||||
tgt = tgt + self.dropout3(tgt2)
|
||||
tgt = self.norm3(tgt)
|
||||
return tgt
|
||||
|
||||
|
||||
def _get_clones(module, N):
|
||||
return LayerList([copy.deepcopy(module) for i in range(N)])
|
||||
|
||||
|
||||
|
||||
class PositionalEncoding(nn.Layer):
|
||||
r"""Inject some information about the relative or absolute position of the tokens
|
||||
in the sequence. The positional encodings have the same dimension as
|
||||
the embeddings, so that the two can be summed. Here, we use sine and cosine
|
||||
functions of different frequencies.
|
||||
.. math::
|
||||
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
|
||||
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
|
||||
\text{where pos is the word position and i is the embed idx)
|
||||
Args:
|
||||
d_model: the embed dim (required).
|
||||
dropout: the dropout value (default=0.1).
|
||||
max_len: the max. length of the incoming sequence (default=5000).
|
||||
Examples:
|
||||
>>> pos_encoder = PositionalEncoding(d_model)
|
||||
"""
|
||||
|
||||
def __init__(self, dropout, dim, max_len=5000):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
pe = paddle.zeros([max_len, dim])
|
||||
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
|
||||
div_term = paddle.exp(paddle.arange(0, dim, 2).astype('float32') * (-math.log(10000.0) / dim))
|
||||
pe[:, 0::2] = paddle.sin(position * div_term)
|
||||
pe[:, 1::2] = paddle.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
pe = pe.transpose([1, 0, 2])
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
r"""Inputs of forward function
|
||||
Args:
|
||||
x: the sequence fed to the positional encoder model (required).
|
||||
Shape:
|
||||
x: [sequence length, batch size, embed dim]
|
||||
output: [sequence length, batch size, embed dim]
|
||||
Examples:
|
||||
>>> output = pos_encoder(x)
|
||||
"""
|
||||
x = x + self.pe[:x.shape[0], :]
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class PositionalEncoding_2d(nn.Layer):
|
||||
r"""Inject some information about the relative or absolute position of the tokens
|
||||
in the sequence. The positional encodings have the same dimension as
|
||||
the embeddings, so that the two can be summed. Here, we use sine and cosine
|
||||
functions of different frequencies.
|
||||
.. math::
|
||||
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model))
|
||||
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model))
|
||||
\text{where pos is the word position and i is the embed idx)
|
||||
Args:
|
||||
d_model: the embed dim (required).
|
||||
dropout: the dropout value (default=0.1).
|
||||
max_len: the max. length of the incoming sequence (default=5000).
|
||||
Examples:
|
||||
>>> pos_encoder = PositionalEncoding(d_model)
|
||||
"""
|
||||
|
||||
def __init__(self, dropout, dim, max_len=5000):
|
||||
super(PositionalEncoding_2d, self).__init__()
|
||||
self.dropout = nn.Dropout(p=dropout)
|
||||
|
||||
pe = paddle.zeros([max_len, dim])
|
||||
position = paddle.arange(0, max_len, dtype=paddle.float32).unsqueeze(1)
|
||||
div_term = paddle.exp(paddle.arange(0, dim, 2).astype('float32') * (-math.log(10000.0) / dim))
|
||||
pe[:, 0::2] = paddle.sin(position * div_term)
|
||||
pe[:, 1::2] = paddle.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0).transpose([1, 0, 2])
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
self.avg_pool_1 = nn.AdaptiveAvgPool2D((1, 1))
|
||||
self.linear1 = nn.Linear(dim, dim)
|
||||
self.linear1.weight.data.fill_(1.)
|
||||
self.avg_pool_2 = nn.AdaptiveAvgPool2D((1, 1))
|
||||
self.linear2 = nn.Linear(dim, dim)
|
||||
self.linear2.weight.data.fill_(1.)
|
||||
|
||||
def forward(self, x):
|
||||
r"""Inputs of forward function
|
||||
Args:
|
||||
x: the sequence fed to the positional encoder model (required).
|
||||
Shape:
|
||||
x: [sequence length, batch size, embed dim]
|
||||
output: [sequence length, batch size, embed dim]
|
||||
Examples:
|
||||
>>> output = pos_encoder(x)
|
||||
"""
|
||||
w_pe = self.pe[:x.shape[-1], :]
|
||||
w1 = self.linear1(self.avg_pool_1(x).squeeze()).unsqueeze(0)
|
||||
w_pe = w_pe * w1
|
||||
w_pe = w_pe.transpose([1, 2, 0])
|
||||
w_pe = w_pe.unsqueeze(2)
|
||||
|
||||
h_pe = self.pe[:x.shape[-2], :]
|
||||
w2 = self.linear2(self.avg_pool_2(x).squeeze()).unsqueeze(0)
|
||||
h_pe = h_pe * w2
|
||||
h_pe = h_pe.transpose([1, 2, 0])
|
||||
h_pe = h_pe.unsqueeze(3)
|
||||
|
||||
x = x + w_pe + h_pe
|
||||
x = x.reshape([x.shape[0], x.shape[1], x.shape[2] * x.shape[3]]).transpose([2,0,1])
|
||||
|
||||
return self.dropout(x)
|
||||
|
||||
|
||||
class Embeddings(nn.Layer):
|
||||
def __init__(self, d_model, vocab, padding_idx, scale_embedding):
|
||||
super(Embeddings, self).__init__()
|
||||
self.embedding = nn.Embedding(vocab, d_model, padding_idx=padding_idx)
|
||||
w0 = np.random.normal(0.0, d_model**-0.5,(vocab, d_model)).astype(np.float32)
|
||||
self.embedding.weight.set_value(w0)
|
||||
self.d_model = d_model
|
||||
self.scale_embedding = scale_embedding
|
||||
|
||||
def forward(self, x):
|
||||
if self.scale_embedding:
|
||||
x = self.embedding(x)
|
||||
return x * math.sqrt(self.d_model)
|
||||
return self.embedding(x)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class Beam():
|
||||
''' Beam search '''
|
||||
|
||||
def __init__(self, size, device=False):
|
||||
|
||||
self.size = size
|
||||
self._done = False
|
||||
# The score for each translation on the beam.
|
||||
self.scores = paddle.zeros((size,), dtype=paddle.float32)
|
||||
self.all_scores = []
|
||||
# The backpointers at each time-step.
|
||||
self.prev_ks = []
|
||||
# The outputs at each time-step.
|
||||
self.next_ys = [paddle.full((size,), 0, dtype=paddle.int64)]
|
||||
self.next_ys[0][0] = 2
|
||||
|
||||
def get_current_state(self):
|
||||
"Get the outputs for the current timestep."
|
||||
return self.get_tentative_hypothesis()
|
||||
|
||||
def get_current_origin(self):
|
||||
"Get the backpointers for the current timestep."
|
||||
return self.prev_ks[-1]
|
||||
|
||||
@property
|
||||
def done(self):
|
||||
return self._done
|
||||
|
||||
def advance(self, word_prob):
|
||||
"Update beam status and check if finished or not."
|
||||
num_words = word_prob.shape[1]
|
||||
|
||||
# Sum the previous scores.
|
||||
if len(self.prev_ks) > 0:
|
||||
beam_lk = word_prob + self.scores.unsqueeze(1).expand_as(word_prob)
|
||||
else:
|
||||
beam_lk = word_prob[0]
|
||||
|
||||
flat_beam_lk = beam_lk.reshape([-1])
|
||||
best_scores, best_scores_id = flat_beam_lk.topk(self.size, 0, True, True) # 1st sort
|
||||
self.all_scores.append(self.scores)
|
||||
self.scores = best_scores
|
||||
|
||||
# bestScoresId is flattened as a (beam x word) array,
|
||||
# so we need to calculate which word and beam each score came from
|
||||
prev_k = best_scores_id // num_words
|
||||
self.prev_ks.append(prev_k)
|
||||
|
||||
self.next_ys.append(best_scores_id - prev_k * num_words)
|
||||
|
||||
# End condition is when top-of-beam is EOS.
|
||||
if self.next_ys[-1][0] == 3 :
|
||||
self._done = True
|
||||
self.all_scores.append(self.scores)
|
||||
|
||||
|
||||
return self._done
|
||||
|
||||
def sort_scores(self):
|
||||
"Sort the scores."
|
||||
return self.scores, paddle.to_tensor([i for i in range(self.scores.shape[0])],dtype='int32')
|
||||
|
||||
def get_the_best_score_and_idx(self):
|
||||
"Get the score of the best in the beam."
|
||||
scores, ids = self.sort_scores()
|
||||
return scores[1], ids[1]
|
||||
|
||||
def get_tentative_hypothesis(self):
|
||||
"Get the decoded sequence for the current timestep."
|
||||
|
||||
if len(self.next_ys) == 1:
|
||||
dec_seq = self.next_ys[0].unsqueeze(1)
|
||||
else:
|
||||
_, keys = self.sort_scores()
|
||||
hyps = [self.get_hypothesis(k) for k in keys]
|
||||
hyps = [[2] + h for h in hyps]
|
||||
dec_seq = paddle.to_tensor(hyps, dtype='int64')
|
||||
|
||||
return dec_seq
|
||||
|
||||
def get_hypothesis(self, k):
|
||||
""" Walk back to construct the full hypothesis. """
|
||||
hyp = []
|
||||
for j in range(len(self.prev_ks) - 1, -1, -1):
|
||||
hyp.append(self.next_ys[j+1][k])
|
||||
k = self.prev_ks[j][k]
|
||||
return list(map(lambda x: x.item(), hyp[::-1]))
|
|
@ -156,6 +156,69 @@ class DistillationCTCLabelDecode(CTCLabelDecode):
|
|||
return output
|
||||
|
||||
|
||||
class NRTRLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
def __init__(self,
|
||||
character_dict_path=None,
|
||||
character_type='EN_symbol',
|
||||
use_space_char=True,
|
||||
**kwargs):
|
||||
super(NRTRLabelDecode, self).__init__(character_dict_path,
|
||||
character_type, use_space_char)
|
||||
|
||||
def __call__(self, preds, label=None, *args, **kwargs):
|
||||
if preds.dtype == paddle.int64:
|
||||
if isinstance(preds, paddle.Tensor):
|
||||
preds = preds.numpy()
|
||||
if preds[0][0]==2:
|
||||
preds_idx = preds[:,1:]
|
||||
else:
|
||||
preds_idx = preds
|
||||
|
||||
text = self.decode(preds_idx)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label[:,1:])
|
||||
else:
|
||||
if isinstance(preds, paddle.Tensor):
|
||||
preds = preds.numpy()
|
||||
preds_idx = preds.argmax(axis=2)
|
||||
preds_prob = preds.max(axis=2)
|
||||
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
|
||||
if label is None:
|
||||
return text
|
||||
label = self.decode(label[:,1:])
|
||||
return text, label
|
||||
|
||||
def add_special_char(self, dict_character):
|
||||
dict_character = ['blank','<unk>','<s>','</s>'] + dict_character
|
||||
return dict_character
|
||||
|
||||
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
||||
""" convert text-index into text-label. """
|
||||
result_list = []
|
||||
batch_size = len(text_index)
|
||||
for batch_idx in range(batch_size):
|
||||
char_list = []
|
||||
conf_list = []
|
||||
for idx in range(len(text_index[batch_idx])):
|
||||
if text_index[batch_idx][idx] == 3: # end
|
||||
break
|
||||
try:
|
||||
char_list.append(self.character[int(text_index[batch_idx][idx])])
|
||||
except:
|
||||
continue
|
||||
if text_prob is not None:
|
||||
conf_list.append(text_prob[batch_idx][idx])
|
||||
else:
|
||||
conf_list.append(1)
|
||||
text = ''.join(char_list)
|
||||
result_list.append((text.lower(), np.mean(conf_list)))
|
||||
return result_list
|
||||
|
||||
|
||||
|
||||
class AttnLabelDecode(BaseRecLabelDecode):
|
||||
""" Convert between text-label and text-index """
|
||||
|
||||
|
|
|
@ -22,7 +22,6 @@ import sys
|
|||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(__dir__)
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
|
||||
|
||||
from ppocr.data import build_dataloader
|
||||
from ppocr.modeling.architectures import build_model
|
||||
from ppocr.postprocess import build_post_process
|
||||
|
@ -31,7 +30,6 @@ from ppocr.utils.save_load import init_model
|
|||
from ppocr.utils.utility import print_dict
|
||||
import tools.program as program
|
||||
|
||||
|
||||
def main():
|
||||
global_config = config['Global']
|
||||
# build dataloader
|
||||
|
|
Loading…
Reference in New Issue