检测和识别的resnet使用paddleclass里的
This commit is contained in:
parent
8f1b9c8b0d
commit
bdad0cefe6
|
@ -16,143 +16,30 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from paddle import nn
|
||||
from paddle.nn import functional as F
|
||||
import paddle
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
|
||||
__all__ = ["ResNet"]
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
def __init__(self, in_channels=3, layers=50, **kwargs):
|
||||
"""
|
||||
the Resnet backbone network for detection module.
|
||||
Args:
|
||||
params(dict): the super parameters for network build
|
||||
"""
|
||||
super(ResNet, self).__init__()
|
||||
supported_layers = {
|
||||
18: {
|
||||
'depth': [2, 2, 2, 2],
|
||||
'block_class': BasicBlock
|
||||
},
|
||||
34: {
|
||||
'depth': [3, 4, 6, 3],
|
||||
'block_class': BasicBlock
|
||||
},
|
||||
50: {
|
||||
'depth': [3, 4, 6, 3],
|
||||
'block_class': BottleneckBlock
|
||||
},
|
||||
101: {
|
||||
'depth': [3, 4, 23, 3],
|
||||
'block_class': BottleneckBlock
|
||||
},
|
||||
152: {
|
||||
'depth': [3, 8, 36, 3],
|
||||
'block_class': BottleneckBlock
|
||||
},
|
||||
200: {
|
||||
'depth': [3, 12, 48, 3],
|
||||
'block_class': BottleneckBlock
|
||||
}
|
||||
}
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
|
||||
is_3x3 = True
|
||||
|
||||
depth = supported_layers[layers]['depth']
|
||||
block_class = supported_layers[layers]['block_class']
|
||||
|
||||
num_filters = [64, 128, 256, 512]
|
||||
|
||||
conv = []
|
||||
if is_3x3 == False:
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=64,
|
||||
kernel_size=7,
|
||||
stride=2,
|
||||
act='relu'))
|
||||
else:
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=3,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
act='relu',
|
||||
name='conv1_1'))
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name='conv1_2'))
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=64,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name='conv1_3'))
|
||||
self.conv1 = nn.Sequential(*conv)
|
||||
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.stages = []
|
||||
self.out_channels = []
|
||||
in_ch = 64
|
||||
for block_index in range(len(depth)):
|
||||
block_list = []
|
||||
for i in range(depth[block_index]):
|
||||
if layers >= 50:
|
||||
if layers in [101, 152, 200] and block_index == 2:
|
||||
if i == 0:
|
||||
conv_name = "res" + str(block_index + 2) + "a"
|
||||
else:
|
||||
conv_name = "res" + str(block_index +
|
||||
2) + "b" + str(i)
|
||||
else:
|
||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
||||
else:
|
||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
||||
block_list.append(
|
||||
block_class(
|
||||
in_channels=in_ch,
|
||||
out_channels=num_filters[block_index],
|
||||
stride=2 if i == 0 and block_index != 0 else 1,
|
||||
if_first=block_index == i == 0,
|
||||
name=conv_name))
|
||||
in_ch = block_list[-1].out_channels
|
||||
self.out_channels.append(in_ch)
|
||||
self.stages.append(nn.Sequential(*block_list))
|
||||
for i, stage in enumerate(self.stages):
|
||||
self.add_sublayer(sublayer=stage, name="stage{}".format(i))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.pool(x)
|
||||
out_list = []
|
||||
for stage in self.stages:
|
||||
x = stage(x)
|
||||
out_list.append(x)
|
||||
return out_list
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
act=None,
|
||||
name=None):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
is_vd_mode=False,
|
||||
act=None,
|
||||
name=None, ):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
|
||||
self.is_vd_mode = is_vd_mode
|
||||
self._pool2d_avg = nn.AvgPool2d(
|
||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
self._conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
|
@ -165,87 +52,32 @@ class ConvBNLayer(nn.Layer):
|
|||
bn_name = "bn_" + name
|
||||
else:
|
||||
bn_name = "bn" + name[3:]
|
||||
self.bn = nn.BatchNorm(
|
||||
num_channels=out_channels,
|
||||
self._batch_norm = nn.BatchNorm(
|
||||
out_channels,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
||||
moving_mean_name=bn_name + "_mean",
|
||||
moving_variance_name=bn_name + "_variance")
|
||||
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||
moving_mean_name=bn_name + '_mean',
|
||||
moving_variance_name=bn_name + '_variance')
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.bn(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvBNLayerNew(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
act=None,
|
||||
name=None):
|
||||
super(ConvBNLayerNew, self).__init__()
|
||||
self.pool = nn.AvgPool2d(
|
||||
kernel_size=2, stride=2, padding=0, ceil_mode=True)
|
||||
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=1,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=groups,
|
||||
weight_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
if name == "conv1":
|
||||
bn_name = "bn_" + name
|
||||
else:
|
||||
bn_name = "bn" + name[3:]
|
||||
self.bn = nn.BatchNorm(
|
||||
num_channels=out_channels,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
||||
moving_mean_name=bn_name + "_mean",
|
||||
moving_variance_name=bn_name + "_variance")
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.pool(x)
|
||||
x = self.conv(x)
|
||||
x = self.bn(x)
|
||||
return x
|
||||
|
||||
|
||||
class ShortCut(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
|
||||
super(ShortCut, self).__init__()
|
||||
self.use_conv = True
|
||||
if in_channels != out_channels or stride != 1:
|
||||
if if_first:
|
||||
self.conv = ConvBNLayer(
|
||||
in_channels, out_channels, 1, stride, name=name)
|
||||
else:
|
||||
self.conv = ConvBNLayerNew(
|
||||
in_channels, out_channels, 1, stride, name=name)
|
||||
elif if_first:
|
||||
self.conv = ConvBNLayer(
|
||||
in_channels, out_channels, 1, stride, name=name)
|
||||
else:
|
||||
self.use_conv = False
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
def forward(self, inputs):
|
||||
if self.is_vd_mode:
|
||||
inputs = self._pool2d_avg(inputs)
|
||||
y = self._conv(inputs)
|
||||
y = self._batch_norm(y)
|
||||
return y
|
||||
|
||||
|
||||
class BottleneckBlock(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride,
|
||||
shortcut=True,
|
||||
if_first=False,
|
||||
name=None):
|
||||
super(BottleneckBlock, self).__init__()
|
||||
|
||||
self.conv0 = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
|
@ -266,32 +98,46 @@ class BottleneckBlock(nn.Layer):
|
|||
act=None,
|
||||
name=name + "_branch2c")
|
||||
|
||||
self.short = ShortCut(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels * 4,
|
||||
stride=stride,
|
||||
if_first=if_first,
|
||||
name=name + "_branch1")
|
||||
self.out_channels = out_channels * 4
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels * 4,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
is_vd_mode=False if if_first else True,
|
||||
name=name + "_branch1")
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv0(x)
|
||||
y = self.conv1(y)
|
||||
y = self.conv2(y)
|
||||
y = y + self.short(x)
|
||||
y = F.relu(y)
|
||||
self.shortcut = shortcut
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv0(inputs)
|
||||
conv1 = self.conv1(y)
|
||||
conv2 = self.conv2(conv1)
|
||||
|
||||
if self.shortcut:
|
||||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class BasicBlock(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride,
|
||||
shortcut=True,
|
||||
if_first=False,
|
||||
name=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.stride = stride
|
||||
self.conv0 = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=3,
|
||||
act='relu',
|
||||
stride=stride,
|
||||
act='relu',
|
||||
name=name + "_branch2a")
|
||||
self.conv1 = ConvBNLayer(
|
||||
in_channels=out_channels,
|
||||
|
@ -299,31 +145,133 @@ class BasicBlock(nn.Layer):
|
|||
kernel_size=3,
|
||||
act=None,
|
||||
name=name + "_branch2b")
|
||||
self.short = ShortCut(
|
||||
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
is_vd_mode=False if if_first else True,
|
||||
name=name + "_branch1")
|
||||
|
||||
self.shortcut = shortcut
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv0(inputs)
|
||||
conv1 = self.conv1(y)
|
||||
|
||||
if self.shortcut:
|
||||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv1, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
def __init__(self, in_channels=3, layers=50, **kwargs):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
self.layers = layers
|
||||
supported_layers = [18, 34, 50, 101, 152, 200]
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(
|
||||
supported_layers, layers)
|
||||
|
||||
if layers == 18:
|
||||
depth = [2, 2, 2, 2]
|
||||
elif layers == 34 or layers == 50:
|
||||
depth = [3, 4, 6, 3]
|
||||
elif layers == 101:
|
||||
depth = [3, 4, 23, 3]
|
||||
elif layers == 152:
|
||||
depth = [3, 8, 36, 3]
|
||||
elif layers == 200:
|
||||
depth = [3, 12, 48, 3]
|
||||
num_channels = [64, 256, 512,
|
||||
1024] if layers >= 50 else [64, 64, 128, 256]
|
||||
num_filters = [64, 128, 256, 512]
|
||||
|
||||
self.conv1_1 = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
stride=stride,
|
||||
if_first=if_first,
|
||||
name=name + "_branch1")
|
||||
self.out_channels = out_channels
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
act='relu',
|
||||
name="conv1_1")
|
||||
self.conv1_2 = ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_2")
|
||||
self.conv1_3 = ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=64,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_3")
|
||||
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv0(x)
|
||||
y = self.conv1(y)
|
||||
y = y + self.short(x)
|
||||
return F.relu(y)
|
||||
self.stages = []
|
||||
self.out_channels = []
|
||||
if layers >= 50:
|
||||
for block in range(len(depth)):
|
||||
block_list = []
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
if layers in [101, 152] and block == 2:
|
||||
if i == 0:
|
||||
conv_name = "res" + str(block + 2) + "a"
|
||||
else:
|
||||
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||||
else:
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
bottleneck_block = self.add_sublayer(
|
||||
'bb_%d_%d' % (block, i),
|
||||
BottleneckBlock(
|
||||
in_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block] * 4,
|
||||
out_channels=num_filters[block],
|
||||
stride=2 if i == 0 and block != 0 else 1,
|
||||
shortcut=shortcut,
|
||||
if_first=block == i == 0,
|
||||
name=conv_name))
|
||||
shortcut = True
|
||||
block_list.append(bottleneck_block)
|
||||
self.out_channels.append(num_filters[block] * 4)
|
||||
self.stages.append(nn.Sequential(*block_list))
|
||||
else:
|
||||
for block in range(len(depth)):
|
||||
block_list = []
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
basic_block = self.add_sublayer(
|
||||
'bb_%d_%d' % (block, i),
|
||||
BasicBlock(
|
||||
in_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block],
|
||||
out_channels=num_filters[block],
|
||||
stride=2 if i == 0 and block != 0 else 1,
|
||||
shortcut=shortcut,
|
||||
if_first=block == i == 0,
|
||||
name=conv_name))
|
||||
shortcut = True
|
||||
block_list.append(basic_block)
|
||||
self.out_channels.append(num_filters[block])
|
||||
self.stages.append(nn.Sequential(*block_list))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import paddle
|
||||
|
||||
paddle.disable_static()
|
||||
x = paddle.zeros([1, 3, 640, 640])
|
||||
x = paddle.to_variable(x)
|
||||
print(x.shape)
|
||||
net = ResNet(layers=18)
|
||||
y = net(x)
|
||||
|
||||
for stage in y:
|
||||
print(stage.shape)
|
||||
# paddle.save(net.state_dict(),'1.pth')
|
||||
def forward(self, inputs):
|
||||
y = self.conv1_1(inputs)
|
||||
y = self.conv1_2(y)
|
||||
y = self.conv1_3(y)
|
||||
y = self.pool2d_max(y)
|
||||
out = []
|
||||
for block in self.stages:
|
||||
y = block(y)
|
||||
out.append(y)
|
||||
return out
|
||||
|
|
|
@ -16,184 +16,34 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from paddle import nn, ParamAttr
|
||||
from paddle.nn import functional as F
|
||||
import paddle
|
||||
from paddle import ParamAttr
|
||||
import paddle.nn as nn
|
||||
|
||||
__all__ = ["ResNet"]
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
def __init__(self, in_channels=3, layers=34):
|
||||
super(ResNet, self).__init__()
|
||||
supported_layers = {
|
||||
18: {
|
||||
'depth': [2, 2, 2, 2],
|
||||
'block_class': BasicBlock
|
||||
},
|
||||
34: {
|
||||
'depth': [3, 4, 6, 3],
|
||||
'block_class': BasicBlock
|
||||
},
|
||||
50: {
|
||||
'depth': [3, 4, 6, 3],
|
||||
'block_class': BottleneckBlock
|
||||
},
|
||||
101: {
|
||||
'depth': [3, 4, 23, 3],
|
||||
'block_class': BottleneckBlock
|
||||
},
|
||||
152: {
|
||||
'depth': [3, 8, 36, 3],
|
||||
'block_class': BottleneckBlock
|
||||
},
|
||||
200: {
|
||||
'depth': [3, 12, 48, 3],
|
||||
'block_class': BottleneckBlock
|
||||
}
|
||||
}
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
|
||||
is_3x3 = True
|
||||
|
||||
num_filters = [64, 128, 256, 512]
|
||||
depth = supported_layers[layers]['depth']
|
||||
block_class = supported_layers[layers]['block_class']
|
||||
conv = []
|
||||
if is_3x3 == False:
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=64,
|
||||
kernel_size=7,
|
||||
stride=1,
|
||||
act='relu'))
|
||||
else:
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name='conv1_1'))
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name='conv1_2'))
|
||||
conv.append(
|
||||
ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=64,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name='conv1_3'))
|
||||
self.conv1 = nn.Sequential(*conv)
|
||||
|
||||
self.pool = nn.MaxPool2d(
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1, )
|
||||
|
||||
block_list = []
|
||||
in_ch = 64
|
||||
for block_index in range(len(depth)):
|
||||
for i in range(depth[block_index]):
|
||||
if layers >= 50:
|
||||
if layers in [101, 152, 200] and block_index == 2:
|
||||
if i == 0:
|
||||
conv_name = "res" + str(block_index + 2) + "a"
|
||||
else:
|
||||
conv_name = "res" + str(block_index +
|
||||
2) + "b" + str(i)
|
||||
else:
|
||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
||||
else:
|
||||
conv_name = "res" + str(block_index + 2) + chr(97 + i)
|
||||
if i == 0 and block_index != 0:
|
||||
stride = (2, 1)
|
||||
else:
|
||||
stride = (1, 1)
|
||||
block_list.append(
|
||||
block_class(
|
||||
in_channels=in_ch,
|
||||
out_channels=num_filters[block_index],
|
||||
stride=stride,
|
||||
if_first=block_index == i == 0,
|
||||
name=conv_name))
|
||||
in_ch = block_list[-1].out_channels
|
||||
self.block_list = nn.Sequential(*block_list)
|
||||
self.add_sublayer(sublayer=self.block_list, name="block_list")
|
||||
self.pool_out = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
||||
self.out_channels = in_ch
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.pool(x)
|
||||
x = self.block_list(x)
|
||||
x = self.pool_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvBNLayer(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
act=None,
|
||||
name=None):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=groups,
|
||||
weight_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
if name == "conv1":
|
||||
bn_name = "bn_" + name
|
||||
else:
|
||||
bn_name = "bn" + name[3:]
|
||||
self.bn = nn.BatchNorm(
|
||||
num_channels=out_channels,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
||||
moving_mean_name=bn_name + "_mean",
|
||||
moving_variance_name=bn_name + "_variance")
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.bn(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvBNLayerNew(nn.Layer):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
act=None,
|
||||
name=None):
|
||||
super(ConvBNLayerNew, self).__init__()
|
||||
self.pool = nn.AvgPool2d(
|
||||
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
|
||||
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
is_vd_mode=False,
|
||||
act=None,
|
||||
name=None, ):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self.is_vd_mode = is_vd_mode
|
||||
self._pool2d_avg = nn.AvgPool2d(
|
||||
kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
|
||||
self._conv = nn.Conv2d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=1 if is_vd_mode else stride,
|
||||
padding=(kernel_size - 1) // 2,
|
||||
groups=groups,
|
||||
weight_attr=ParamAttr(name=name + "_weights"),
|
||||
|
@ -202,48 +52,32 @@ class ConvBNLayerNew(nn.Layer):
|
|||
bn_name = "bn_" + name
|
||||
else:
|
||||
bn_name = "bn" + name[3:]
|
||||
self.bn = nn.BatchNorm(
|
||||
num_channels=out_channels,
|
||||
self._batch_norm = nn.BatchNorm(
|
||||
out_channels,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + "_scale"),
|
||||
bias_attr=ParamAttr(name=bn_name + "_offset"),
|
||||
moving_mean_name=bn_name + "_mean",
|
||||
moving_variance_name=bn_name + "_variance")
|
||||
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||
moving_mean_name=bn_name + '_mean',
|
||||
moving_variance_name=bn_name + '_variance')
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.pool(x)
|
||||
x = self.conv(x)
|
||||
x = self.bn(x)
|
||||
return x
|
||||
|
||||
|
||||
class ShortCut(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, stride, name, if_first=False):
|
||||
super(ShortCut, self).__init__()
|
||||
self.use_conv = True
|
||||
|
||||
if in_channels != out_channels or stride[0] != 1:
|
||||
if if_first:
|
||||
self.conv = ConvBNLayer(
|
||||
in_channels, out_channels, 1, stride, name=name)
|
||||
else:
|
||||
self.conv = ConvBNLayerNew(
|
||||
in_channels, out_channels, 1, stride, name=name)
|
||||
elif if_first:
|
||||
self.conv = ConvBNLayer(
|
||||
in_channels, out_channels, 1, stride, name=name)
|
||||
else:
|
||||
self.use_conv = False
|
||||
|
||||
def forward(self, x):
|
||||
if self.use_conv:
|
||||
x = self.conv(x)
|
||||
return x
|
||||
def forward(self, inputs):
|
||||
if self.is_vd_mode:
|
||||
inputs = self._pool2d_avg(inputs)
|
||||
y = self._conv(inputs)
|
||||
y = self._batch_norm(y)
|
||||
return y
|
||||
|
||||
|
||||
class BottleneckBlock(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride,
|
||||
shortcut=True,
|
||||
if_first=False,
|
||||
name=None):
|
||||
super(BottleneckBlock, self).__init__()
|
||||
|
||||
self.conv0 = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
|
@ -264,32 +98,47 @@ class BottleneckBlock(nn.Layer):
|
|||
act=None,
|
||||
name=name + "_branch2c")
|
||||
|
||||
self.short = ShortCut(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels * 4,
|
||||
stride=stride,
|
||||
if_first=if_first,
|
||||
name=name + "_branch1")
|
||||
self.out_channels = out_channels * 4
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels * 4,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
is_vd_mode=not if_first and stride[0] != 1,
|
||||
name=name + "_branch1")
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv0(x)
|
||||
y = self.conv1(y)
|
||||
y = self.conv2(y)
|
||||
y = y + self.short(x)
|
||||
y = F.relu(y)
|
||||
self.shortcut = shortcut
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv0(inputs)
|
||||
|
||||
conv1 = self.conv1(y)
|
||||
conv2 = self.conv2(conv1)
|
||||
|
||||
if self.shortcut:
|
||||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class BasicBlock(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, stride, name, if_first):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
stride,
|
||||
shortcut=True,
|
||||
if_first=False,
|
||||
name=None):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.stride = stride
|
||||
self.conv0 = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=3,
|
||||
act='relu',
|
||||
stride=stride,
|
||||
act='relu',
|
||||
name=name + "_branch2a")
|
||||
self.conv1 = ConvBNLayer(
|
||||
in_channels=out_channels,
|
||||
|
@ -297,16 +146,138 @@ class BasicBlock(nn.Layer):
|
|||
kernel_size=3,
|
||||
act=None,
|
||||
name=name + "_branch2b")
|
||||
self.short = ShortCut(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
stride=stride,
|
||||
if_first=if_first,
|
||||
name=name + "_branch1")
|
||||
self.out_channels = out_channels
|
||||
|
||||
def forward(self, x):
|
||||
y = self.conv0(x)
|
||||
y = self.conv1(y)
|
||||
y = y + self.short(x)
|
||||
return F.relu(y)
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
stride=stride,
|
||||
is_vd_mode=not if_first and stride[0] != 1,
|
||||
name=name + "_branch1")
|
||||
|
||||
self.shortcut = shortcut
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv0(inputs)
|
||||
conv1 = self.conv1(y)
|
||||
|
||||
if self.shortcut:
|
||||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = paddle.elementwise_add(x=short, y=conv1, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class ResNet(nn.Layer):
|
||||
def __init__(self, in_channels=3, layers=50, **kwargs):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
self.layers = layers
|
||||
supported_layers = [18, 34, 50, 101, 152, 200]
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(
|
||||
supported_layers, layers)
|
||||
|
||||
if layers == 18:
|
||||
depth = [2, 2, 2, 2]
|
||||
elif layers == 34 or layers == 50:
|
||||
depth = [3, 4, 6, 3]
|
||||
elif layers == 101:
|
||||
depth = [3, 4, 23, 3]
|
||||
elif layers == 152:
|
||||
depth = [3, 8, 36, 3]
|
||||
elif layers == 200:
|
||||
depth = [3, 12, 48, 3]
|
||||
num_channels = [64, 256, 512,
|
||||
1024] if layers >= 50 else [64, 64, 128, 256]
|
||||
num_filters = [64, 128, 256, 512]
|
||||
|
||||
self.conv1_1 = ConvBNLayer(
|
||||
in_channels=in_channels,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_1")
|
||||
self.conv1_2 = ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=32,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_2")
|
||||
self.conv1_3 = ConvBNLayer(
|
||||
in_channels=32,
|
||||
out_channels=64,
|
||||
kernel_size=3,
|
||||
stride=1,
|
||||
act='relu',
|
||||
name="conv1_3")
|
||||
self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.block_list = []
|
||||
if layers >= 50:
|
||||
for block in range(len(depth)):
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
if layers in [101, 152, 200] and block == 2:
|
||||
if i == 0:
|
||||
conv_name = "res" + str(block + 2) + "a"
|
||||
else:
|
||||
conv_name = "res" + str(block + 2) + "b" + str(i)
|
||||
else:
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
|
||||
if i == 0 and block != 0:
|
||||
stride = (2, 1)
|
||||
else:
|
||||
stride = (1, 1)
|
||||
bottleneck_block = self.add_sublayer(
|
||||
'bb_%d_%d' % (block, i),
|
||||
BottleneckBlock(
|
||||
in_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block] * 4,
|
||||
out_channels=num_filters[block],
|
||||
stride=stride,
|
||||
shortcut=shortcut,
|
||||
if_first=block == i == 0,
|
||||
name=conv_name))
|
||||
shortcut = True
|
||||
self.block_list.append(bottleneck_block)
|
||||
self.out_channels = num_filters[block]
|
||||
else:
|
||||
for block in range(len(depth)):
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
conv_name = "res" + str(block + 2) + chr(97 + i)
|
||||
if i == 0 and block != 0:
|
||||
stride = (2, 1)
|
||||
else:
|
||||
stride = (1, 1)
|
||||
|
||||
basic_block = self.add_sublayer(
|
||||
'bb_%d_%d' % (block, i),
|
||||
BasicBlock(
|
||||
in_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block],
|
||||
out_channels=num_filters[block],
|
||||
stride=stride,
|
||||
shortcut=shortcut,
|
||||
if_first=block == i == 0,
|
||||
name=conv_name))
|
||||
shortcut = True
|
||||
self.block_list.append(basic_block)
|
||||
self.out_channels = num_filters[block]
|
||||
self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv1_1(inputs)
|
||||
y = self.conv1_2(y)
|
||||
y = self.conv1_3(y)
|
||||
y = self.pool2d_max(y)
|
||||
for block in self.block_list:
|
||||
y = block(y)
|
||||
y = self.out_pool(y)
|
||||
return y
|
||||
|
|
Loading…
Reference in New Issue