diff --git a/ppocr/modeling/backbones/det_resnet_vd.py b/ppocr/modeling/backbones/det_resnet_vd.py
index b501bec8..6fa52716 100644
--- a/ppocr/modeling/backbones/det_resnet_vd.py
+++ b/ppocr/modeling/backbones/det_resnet_vd.py
@@ -16,143 +16,30 @@ from __future__ import absolute_import
 from __future__ import division
 from __future__ import print_function
 
-from paddle import nn
-from paddle.nn import functional as F
+import paddle
 from paddle import ParamAttr
+import paddle.nn as nn
 
 __all__ = ["ResNet"]
 
 
-class ResNet(nn.Layer):
-    def __init__(self, in_channels=3, layers=50, **kwargs):
-        """
-        the Resnet backbone network for detection module.
-        Args:
-            params(dict): the super parameters for network build
-        """
-        super(ResNet, self).__init__()
-        supported_layers = {
-            18: {
-                'depth': [2, 2, 2, 2],
-                'block_class': BasicBlock
-            },
-            34: {
-                'depth': [3, 4, 6, 3],
-                'block_class': BasicBlock
-            },
-            50: {
-                'depth': [3, 4, 6, 3],
-                'block_class': BottleneckBlock
-            },
-            101: {
-                'depth': [3, 4, 23, 3],
-                'block_class': BottleneckBlock
-            },
-            152: {
-                'depth': [3, 8, 36, 3],
-                'block_class': BottleneckBlock
-            },
-            200: {
-                'depth': [3, 12, 48, 3],
-                'block_class': BottleneckBlock
-            }
-        }
-        assert layers in supported_layers, \
-            "supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
-        is_3x3 = True
-
-        depth = supported_layers[layers]['depth']
-        block_class = supported_layers[layers]['block_class']
-
-        num_filters = [64, 128, 256, 512]
-
-        conv = []
-        if is_3x3 == False:
-            conv.append(
-                ConvBNLayer(
-                    in_channels=in_channels,
-                    out_channels=64,
-                    kernel_size=7,
-                    stride=2,
-                    act='relu'))
-        else:
-            conv.append(
-                ConvBNLayer(
-                    in_channels=3,
-                    out_channels=32,
-                    kernel_size=3,
-                    stride=2,
-                    act='relu',
-                    name='conv1_1'))
-            conv.append(
-                ConvBNLayer(
-                    in_channels=32,
-                    out_channels=32,
-                    kernel_size=3,
-                    stride=1,
-                    act='relu',
-                    name='conv1_2'))
-            conv.append(
-                ConvBNLayer(
-                    in_channels=32,
-                    out_channels=64,
-                    kernel_size=3,
-                    stride=1,
-                    act='relu',
-                    name='conv1_3'))
-        self.conv1 = nn.Sequential(*conv)
-        self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
-        self.stages = []
-        self.out_channels = []
-        in_ch = 64
-        for block_index in range(len(depth)):
-            block_list = []
-            for i in range(depth[block_index]):
-                if layers >= 50:
-                    if layers in [101, 152, 200] and block_index == 2:
-                        if i == 0:
-                            conv_name = "res" + str(block_index + 2) + "a"
-                        else:
-                            conv_name = "res" + str(block_index +
-                                                    2) + "b" + str(i)
-                    else:
-                        conv_name = "res" + str(block_index + 2) + chr(97 + i)
-                else:
-                    conv_name = "res" + str(block_index + 2) + chr(97 + i)
-                block_list.append(
-                    block_class(
-                        in_channels=in_ch,
-                        out_channels=num_filters[block_index],
-                        stride=2 if i == 0 and block_index != 0 else 1,
-                        if_first=block_index == i == 0,
-                        name=conv_name))
-                in_ch = block_list[-1].out_channels
-            self.out_channels.append(in_ch)
-            self.stages.append(nn.Sequential(*block_list))
-        for i, stage in enumerate(self.stages):
-            self.add_sublayer(sublayer=stage, name="stage{}".format(i))
-
-    def forward(self, x):
-        x = self.conv1(x)
-        x = self.pool(x)
-        out_list = []
-        for stage in self.stages:
-            x = stage(x)
-            out_list.append(x)
-        return out_list
-
-
 class ConvBNLayer(nn.Layer):
-    def __init__(self,
-                 in_channels,
-                 out_channels,
-                 kernel_size,
-                 stride=1,
-                 groups=1,
-                 act=None,
-                 name=None):
+    def __init__(
+            self,
+            in_channels,
+            out_channels,
+            kernel_size,
+            stride=1,
+            groups=1,
+            is_vd_mode=False,
+            act=None,
+            name=None, ):
         super(ConvBNLayer, self).__init__()
-        self.conv = nn.Conv2d(
+
+        self.is_vd_mode = is_vd_mode
+        self._pool2d_avg = nn.AvgPool2d(
+            kernel_size=2, stride=2, padding=0, ceil_mode=True)
+        self._conv = nn.Conv2d(
             in_channels=in_channels,
             out_channels=out_channels,
             kernel_size=kernel_size,
@@ -165,87 +52,32 @@ class ConvBNLayer(nn.Layer):
             bn_name = "bn_" + name
         else:
             bn_name = "bn" + name[3:]
-        self.bn = nn.BatchNorm(
-            num_channels=out_channels,
+        self._batch_norm = nn.BatchNorm(
+            out_channels,
             act=act,
-            param_attr=ParamAttr(name=bn_name + "_scale"),
-            bias_attr=ParamAttr(name=bn_name + "_offset"),
-            moving_mean_name=bn_name + "_mean",
-            moving_variance_name=bn_name + "_variance")
+            param_attr=ParamAttr(name=bn_name + '_scale'),
+            bias_attr=ParamAttr(bn_name + '_offset'),
+            moving_mean_name=bn_name + '_mean',
+            moving_variance_name=bn_name + '_variance')
 
-    def __call__(self, x):
-        x = self.conv(x)
-        x = self.bn(x)
-        return x
-
-
-class ConvBNLayerNew(nn.Layer):
-    def __init__(self,
-                 in_channels,
-                 out_channels,
-                 kernel_size,
-                 stride=1,
-                 groups=1,
-                 act=None,
-                 name=None):
-        super(ConvBNLayerNew, self).__init__()
-        self.pool = nn.AvgPool2d(
-            kernel_size=2, stride=2, padding=0, ceil_mode=True)
-
-        self.conv = nn.Conv2d(
-            in_channels=in_channels,
-            out_channels=out_channels,
-            kernel_size=kernel_size,
-            stride=1,
-            padding=(kernel_size - 1) // 2,
-            groups=groups,
-            weight_attr=ParamAttr(name=name + "_weights"),
-            bias_attr=False)
-        if name == "conv1":
-            bn_name = "bn_" + name
-        else:
-            bn_name = "bn" + name[3:]
-        self.bn = nn.BatchNorm(
-            num_channels=out_channels,
-            act=act,
-            param_attr=ParamAttr(name=bn_name + "_scale"),
-            bias_attr=ParamAttr(name=bn_name + "_offset"),
-            moving_mean_name=bn_name + "_mean",
-            moving_variance_name=bn_name + "_variance")
-
-    def __call__(self, x):
-        x = self.pool(x)
-        x = self.conv(x)
-        x = self.bn(x)
-        return x
-
-
-class ShortCut(nn.Layer):
-    def __init__(self, in_channels, out_channels, stride, name, if_first=False):
-        super(ShortCut, self).__init__()
-        self.use_conv = True
-        if in_channels != out_channels or stride != 1:
-            if if_first:
-                self.conv = ConvBNLayer(
-                    in_channels, out_channels, 1, stride, name=name)
-            else:
-                self.conv = ConvBNLayerNew(
-                    in_channels, out_channels, 1, stride, name=name)
-        elif if_first:
-            self.conv = ConvBNLayer(
-                in_channels, out_channels, 1, stride, name=name)
-        else:
-            self.use_conv = False
-
-    def forward(self, x):
-        if self.use_conv:
-            x = self.conv(x)
-        return x
+    def forward(self, inputs):
+        if self.is_vd_mode:
+            inputs = self._pool2d_avg(inputs)
+        y = self._conv(inputs)
+        y = self._batch_norm(y)
+        return y
 
 
 class BottleneckBlock(nn.Layer):
-    def __init__(self, in_channels, out_channels, stride, name, if_first):
+    def __init__(self,
+                 in_channels,
+                 out_channels,
+                 stride,
+                 shortcut=True,
+                 if_first=False,
+                 name=None):
         super(BottleneckBlock, self).__init__()
+
         self.conv0 = ConvBNLayer(
             in_channels=in_channels,
             out_channels=out_channels,
@@ -266,32 +98,46 @@ class BottleneckBlock(nn.Layer):
             act=None,
             name=name + "_branch2c")
 
-        self.short = ShortCut(
-            in_channels=in_channels,
-            out_channels=out_channels * 4,
-            stride=stride,
-            if_first=if_first,
-            name=name + "_branch1")
-        self.out_channels = out_channels * 4
+        if not shortcut:
+            self.short = ConvBNLayer(
+                in_channels=in_channels,
+                out_channels=out_channels * 4,
+                kernel_size=1,
+                stride=1,
+                is_vd_mode=False if if_first else True,
+                name=name + "_branch1")
 
-    def forward(self, x):
-        y = self.conv0(x)
-        y = self.conv1(y)
-        y = self.conv2(y)
-        y = y + self.short(x)
-        y = F.relu(y)
+        self.shortcut = shortcut
+
+    def forward(self, inputs):
+        y = self.conv0(inputs)
+        conv1 = self.conv1(y)
+        conv2 = self.conv2(conv1)
+
+        if self.shortcut:
+            short = inputs
+        else:
+            short = self.short(inputs)
+        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
         return y
 
 
 class BasicBlock(nn.Layer):
-    def __init__(self, in_channels, out_channels, stride, name, if_first):
+    def __init__(self,
+                 in_channels,
+                 out_channels,
+                 stride,
+                 shortcut=True,
+                 if_first=False,
+                 name=None):
         super(BasicBlock, self).__init__()
+        self.stride = stride
         self.conv0 = ConvBNLayer(
             in_channels=in_channels,
             out_channels=out_channels,
             kernel_size=3,
-            act='relu',
             stride=stride,
+            act='relu',
             name=name + "_branch2a")
         self.conv1 = ConvBNLayer(
             in_channels=out_channels,
@@ -299,31 +145,133 @@ class BasicBlock(nn.Layer):
             kernel_size=3,
             act=None,
             name=name + "_branch2b")
-        self.short = ShortCut(
+
+        if not shortcut:
+            self.short = ConvBNLayer(
+                in_channels=in_channels,
+                out_channels=out_channels,
+                kernel_size=1,
+                stride=1,
+                is_vd_mode=False if if_first else True,
+                name=name + "_branch1")
+
+        self.shortcut = shortcut
+
+    def forward(self, inputs):
+        y = self.conv0(inputs)
+        conv1 = self.conv1(y)
+
+        if self.shortcut:
+            short = inputs
+        else:
+            short = self.short(inputs)
+        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
+        return y
+
+
+class ResNet(nn.Layer):
+    def __init__(self, in_channels=3, layers=50, **kwargs):
+        super(ResNet, self).__init__()
+
+        self.layers = layers
+        supported_layers = [18, 34, 50, 101, 152, 200]
+        assert layers in supported_layers, \
+            "supported layers are {} but input layer is {}".format(
+                supported_layers, layers)
+
+        if layers == 18:
+            depth = [2, 2, 2, 2]
+        elif layers == 34 or layers == 50:
+            depth = [3, 4, 6, 3]
+        elif layers == 101:
+            depth = [3, 4, 23, 3]
+        elif layers == 152:
+            depth = [3, 8, 36, 3]
+        elif layers == 200:
+            depth = [3, 12, 48, 3]
+        num_channels = [64, 256, 512,
+                        1024] if layers >= 50 else [64, 64, 128, 256]
+        num_filters = [64, 128, 256, 512]
+
+        self.conv1_1 = ConvBNLayer(
             in_channels=in_channels,
-            out_channels=out_channels,
-            stride=stride,
-            if_first=if_first,
-            name=name + "_branch1")
-        self.out_channels = out_channels
+            out_channels=32,
+            kernel_size=3,
+            stride=2,
+            act='relu',
+            name="conv1_1")
+        self.conv1_2 = ConvBNLayer(
+            in_channels=32,
+            out_channels=32,
+            kernel_size=3,
+            stride=1,
+            act='relu',
+            name="conv1_2")
+        self.conv1_3 = ConvBNLayer(
+            in_channels=32,
+            out_channels=64,
+            kernel_size=3,
+            stride=1,
+            act='relu',
+            name="conv1_3")
+        self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 
-    def forward(self, x):
-        y = self.conv0(x)
-        y = self.conv1(y)
-        y = y + self.short(x)
-        return F.relu(y)
+        self.stages = []
+        self.out_channels = []
+        if layers >= 50:
+            for block in range(len(depth)):
+                block_list = []
+                shortcut = False
+                for i in range(depth[block]):
+                    if layers in [101, 152] and block == 2:
+                        if i == 0:
+                            conv_name = "res" + str(block + 2) + "a"
+                        else:
+                            conv_name = "res" + str(block + 2) + "b" + str(i)
+                    else:
+                        conv_name = "res" + str(block + 2) + chr(97 + i)
+                    bottleneck_block = self.add_sublayer(
+                        'bb_%d_%d' % (block, i),
+                        BottleneckBlock(
+                            in_channels=num_channels[block]
+                            if i == 0 else num_filters[block] * 4,
+                            out_channels=num_filters[block],
+                            stride=2 if i == 0 and block != 0 else 1,
+                            shortcut=shortcut,
+                            if_first=block == i == 0,
+                            name=conv_name))
+                    shortcut = True
+                    block_list.append(bottleneck_block)
+                self.out_channels.append(num_filters[block] * 4)
+                self.stages.append(nn.Sequential(*block_list))
+        else:
+            for block in range(len(depth)):
+                block_list = []
+                shortcut = False
+                for i in range(depth[block]):
+                    conv_name = "res" + str(block + 2) + chr(97 + i)
+                    basic_block = self.add_sublayer(
+                        'bb_%d_%d' % (block, i),
+                        BasicBlock(
+                            in_channels=num_channels[block]
+                            if i == 0 else num_filters[block],
+                            out_channels=num_filters[block],
+                            stride=2 if i == 0 and block != 0 else 1,
+                            shortcut=shortcut,
+                            if_first=block == i == 0,
+                            name=conv_name))
+                    shortcut = True
+                    block_list.append(basic_block)
+                self.out_channels.append(num_filters[block])
+                self.stages.append(nn.Sequential(*block_list))
 
-
-if __name__ == '__main__':
-    import paddle
-
-    paddle.disable_static()
-    x = paddle.zeros([1, 3, 640, 640])
-    x = paddle.to_variable(x)
-    print(x.shape)
-    net = ResNet(layers=18)
-    y = net(x)
-
-    for stage in y:
-        print(stage.shape)
-    # paddle.save(net.state_dict(),'1.pth')
+    def forward(self, inputs):
+        y = self.conv1_1(inputs)
+        y = self.conv1_2(y)
+        y = self.conv1_3(y)
+        y = self.pool2d_max(y)
+        out = []
+        for block in self.stages:
+            y = block(y)
+            out.append(y)
+        return out
diff --git a/ppocr/modeling/backbones/rec_resnet_vd.py b/ppocr/modeling/backbones/rec_resnet_vd.py
index d8602498..20b03c3d 100644
--- a/ppocr/modeling/backbones/rec_resnet_vd.py
+++ b/ppocr/modeling/backbones/rec_resnet_vd.py
@@ -16,184 +16,34 @@ from __future__ import absolute_import
 from __future__ import division
 from __future__ import print_function
 
-from paddle import nn, ParamAttr
-from paddle.nn import functional as F
+import paddle
+from paddle import ParamAttr
+import paddle.nn as nn
 
 __all__ = ["ResNet"]
 
 
-class ResNet(nn.Layer):
-    def __init__(self, in_channels=3, layers=34):
-        super(ResNet, self).__init__()
-        supported_layers = {
-            18: {
-                'depth': [2, 2, 2, 2],
-                'block_class': BasicBlock
-            },
-            34: {
-                'depth': [3, 4, 6, 3],
-                'block_class': BasicBlock
-            },
-            50: {
-                'depth': [3, 4, 6, 3],
-                'block_class': BottleneckBlock
-            },
-            101: {
-                'depth': [3, 4, 23, 3],
-                'block_class': BottleneckBlock
-            },
-            152: {
-                'depth': [3, 8, 36, 3],
-                'block_class': BottleneckBlock
-            },
-            200: {
-                'depth': [3, 12, 48, 3],
-                'block_class': BottleneckBlock
-            }
-        }
-        assert layers in supported_layers, \
-            "supported layers are {} but input layer is {}".format(supported_layers.keys(), layers)
-        is_3x3 = True
-
-        num_filters = [64, 128, 256, 512]
-        depth = supported_layers[layers]['depth']
-        block_class = supported_layers[layers]['block_class']
-        conv = []
-        if is_3x3 == False:
-            conv.append(
-                ConvBNLayer(
-                    in_channels=in_channels,
-                    out_channels=64,
-                    kernel_size=7,
-                    stride=1,
-                    act='relu'))
-        else:
-            conv.append(
-                ConvBNLayer(
-                    in_channels=in_channels,
-                    out_channels=32,
-                    kernel_size=3,
-                    stride=1,
-                    act='relu',
-                    name='conv1_1'))
-            conv.append(
-                ConvBNLayer(
-                    in_channels=32,
-                    out_channels=32,
-                    kernel_size=3,
-                    stride=1,
-                    act='relu',
-                    name='conv1_2'))
-            conv.append(
-                ConvBNLayer(
-                    in_channels=32,
-                    out_channels=64,
-                    kernel_size=3,
-                    stride=1,
-                    act='relu',
-                    name='conv1_3'))
-        self.conv1 = nn.Sequential(*conv)
-
-        self.pool = nn.MaxPool2d(
-            kernel_size=3,
-            stride=2,
-            padding=1, )
-
-        block_list = []
-        in_ch = 64
-        for block_index in range(len(depth)):
-            for i in range(depth[block_index]):
-                if layers >= 50:
-                    if layers in [101, 152, 200] and block_index == 2:
-                        if i == 0:
-                            conv_name = "res" + str(block_index + 2) + "a"
-                        else:
-                            conv_name = "res" + str(block_index +
-                                                    2) + "b" + str(i)
-                    else:
-                        conv_name = "res" + str(block_index + 2) + chr(97 + i)
-                else:
-                    conv_name = "res" + str(block_index + 2) + chr(97 + i)
-                if i == 0 and block_index != 0:
-                    stride = (2, 1)
-                else:
-                    stride = (1, 1)
-                block_list.append(
-                    block_class(
-                        in_channels=in_ch,
-                        out_channels=num_filters[block_index],
-                        stride=stride,
-                        if_first=block_index == i == 0,
-                        name=conv_name))
-                in_ch = block_list[-1].out_channels
-        self.block_list = nn.Sequential(*block_list)
-        self.add_sublayer(sublayer=self.block_list, name="block_list")
-        self.pool_out = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
-        self.out_channels = in_ch
-
-    def forward(self, x):
-        x = self.conv1(x)
-        x = self.pool(x)
-        x = self.block_list(x)
-        x = self.pool_out(x)
-        return x
-
-
 class ConvBNLayer(nn.Layer):
-    def __init__(self,
-                 in_channels,
-                 out_channels,
-                 kernel_size,
-                 stride=1,
-                 groups=1,
-                 act=None,
-                 name=None):
-        super(ConvBNLayer, self).__init__()
-        self.conv = nn.Conv2d(
-            in_channels=in_channels,
-            out_channels=out_channels,
-            kernel_size=kernel_size,
-            stride=stride,
-            padding=(kernel_size - 1) // 2,
-            groups=groups,
-            weight_attr=ParamAttr(name=name + "_weights"),
-            bias_attr=False)
-        if name == "conv1":
-            bn_name = "bn_" + name
-        else:
-            bn_name = "bn" + name[3:]
-        self.bn = nn.BatchNorm(
-            num_channels=out_channels,
-            act=act,
-            param_attr=ParamAttr(name=bn_name + "_scale"),
-            bias_attr=ParamAttr(name=bn_name + "_offset"),
-            moving_mean_name=bn_name + "_mean",
-            moving_variance_name=bn_name + "_variance")
-
-    def __call__(self, x):
-        x = self.conv(x)
-        x = self.bn(x)
-        return x
-
-
-class ConvBNLayerNew(nn.Layer):
-    def __init__(self,
-                 in_channels,
-                 out_channels,
-                 kernel_size,
-                 stride=1,
-                 groups=1,
-                 act=None,
-                 name=None):
-        super(ConvBNLayerNew, self).__init__()
-        self.pool = nn.AvgPool2d(
-            kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
-
-        self.conv = nn.Conv2d(
-            in_channels=in_channels,
-            out_channels=out_channels,
-            kernel_size=kernel_size,
+    def __init__(
+            self,
+            in_channels,
+            out_channels,
+            kernel_size,
             stride=1,
+            groups=1,
+            is_vd_mode=False,
+            act=None,
+            name=None, ):
+        super(ConvBNLayer, self).__init__()
+
+        self.is_vd_mode = is_vd_mode
+        self._pool2d_avg = nn.AvgPool2d(
+            kernel_size=stride, stride=stride, padding=0, ceil_mode=True)
+        self._conv = nn.Conv2d(
+            in_channels=in_channels,
+            out_channels=out_channels,
+            kernel_size=kernel_size,
+            stride=1 if is_vd_mode else stride,
             padding=(kernel_size - 1) // 2,
             groups=groups,
             weight_attr=ParamAttr(name=name + "_weights"),
@@ -202,48 +52,32 @@ class ConvBNLayerNew(nn.Layer):
             bn_name = "bn_" + name
         else:
             bn_name = "bn" + name[3:]
-        self.bn = nn.BatchNorm(
-            num_channels=out_channels,
+        self._batch_norm = nn.BatchNorm(
+            out_channels,
             act=act,
-            param_attr=ParamAttr(name=bn_name + "_scale"),
-            bias_attr=ParamAttr(name=bn_name + "_offset"),
-            moving_mean_name=bn_name + "_mean",
-            moving_variance_name=bn_name + "_variance")
+            param_attr=ParamAttr(name=bn_name + '_scale'),
+            bias_attr=ParamAttr(bn_name + '_offset'),
+            moving_mean_name=bn_name + '_mean',
+            moving_variance_name=bn_name + '_variance')
 
-    def __call__(self, x):
-        x = self.pool(x)
-        x = self.conv(x)
-        x = self.bn(x)
-        return x
-
-
-class ShortCut(nn.Layer):
-    def __init__(self, in_channels, out_channels, stride, name, if_first=False):
-        super(ShortCut, self).__init__()
-        self.use_conv = True
-
-        if in_channels != out_channels or stride[0] != 1:
-            if if_first:
-                self.conv = ConvBNLayer(
-                    in_channels, out_channels, 1, stride, name=name)
-            else:
-                self.conv = ConvBNLayerNew(
-                    in_channels, out_channels, 1, stride, name=name)
-        elif if_first:
-            self.conv = ConvBNLayer(
-                in_channels, out_channels, 1, stride, name=name)
-        else:
-            self.use_conv = False
-
-    def forward(self, x):
-        if self.use_conv:
-            x = self.conv(x)
-        return x
+    def forward(self, inputs):
+        if self.is_vd_mode:
+            inputs = self._pool2d_avg(inputs)
+        y = self._conv(inputs)
+        y = self._batch_norm(y)
+        return y
 
 
 class BottleneckBlock(nn.Layer):
-    def __init__(self, in_channels, out_channels, stride, name, if_first):
+    def __init__(self,
+                 in_channels,
+                 out_channels,
+                 stride,
+                 shortcut=True,
+                 if_first=False,
+                 name=None):
         super(BottleneckBlock, self).__init__()
+
         self.conv0 = ConvBNLayer(
             in_channels=in_channels,
             out_channels=out_channels,
@@ -264,32 +98,47 @@ class BottleneckBlock(nn.Layer):
             act=None,
             name=name + "_branch2c")
 
-        self.short = ShortCut(
-            in_channels=in_channels,
-            out_channels=out_channels * 4,
-            stride=stride,
-            if_first=if_first,
-            name=name + "_branch1")
-        self.out_channels = out_channels * 4
+        if not shortcut:
+            self.short = ConvBNLayer(
+                in_channels=in_channels,
+                out_channels=out_channels * 4,
+                kernel_size=1,
+                stride=stride,
+                is_vd_mode=not if_first and stride[0] != 1,
+                name=name + "_branch1")
 
-    def forward(self, x):
-        y = self.conv0(x)
-        y = self.conv1(y)
-        y = self.conv2(y)
-        y = y + self.short(x)
-        y = F.relu(y)
+        self.shortcut = shortcut
+
+    def forward(self, inputs):
+        y = self.conv0(inputs)
+
+        conv1 = self.conv1(y)
+        conv2 = self.conv2(conv1)
+
+        if self.shortcut:
+            short = inputs
+        else:
+            short = self.short(inputs)
+        y = paddle.elementwise_add(x=short, y=conv2, act='relu')
         return y
 
 
 class BasicBlock(nn.Layer):
-    def __init__(self, in_channels, out_channels, stride, name, if_first):
+    def __init__(self,
+                 in_channels,
+                 out_channels,
+                 stride,
+                 shortcut=True,
+                 if_first=False,
+                 name=None):
         super(BasicBlock, self).__init__()
+        self.stride = stride
         self.conv0 = ConvBNLayer(
             in_channels=in_channels,
             out_channels=out_channels,
             kernel_size=3,
-            act='relu',
             stride=stride,
+            act='relu',
             name=name + "_branch2a")
         self.conv1 = ConvBNLayer(
             in_channels=out_channels,
@@ -297,16 +146,138 @@ class BasicBlock(nn.Layer):
             kernel_size=3,
             act=None,
             name=name + "_branch2b")
-        self.short = ShortCut(
-            in_channels=in_channels,
-            out_channels=out_channels,
-            stride=stride,
-            if_first=if_first,
-            name=name + "_branch1")
-        self.out_channels = out_channels
 
-    def forward(self, x):
-        y = self.conv0(x)
-        y = self.conv1(y)
-        y = y + self.short(x)
-        return F.relu(y)
+        if not shortcut:
+            self.short = ConvBNLayer(
+                in_channels=in_channels,
+                out_channels=out_channels,
+                kernel_size=1,
+                stride=stride,
+                is_vd_mode=not if_first and stride[0] != 1,
+                name=name + "_branch1")
+
+        self.shortcut = shortcut
+
+    def forward(self, inputs):
+        y = self.conv0(inputs)
+        conv1 = self.conv1(y)
+
+        if self.shortcut:
+            short = inputs
+        else:
+            short = self.short(inputs)
+        y = paddle.elementwise_add(x=short, y=conv1, act='relu')
+        return y
+
+
+class ResNet(nn.Layer):
+    def __init__(self, in_channels=3, layers=50, **kwargs):
+        super(ResNet, self).__init__()
+
+        self.layers = layers
+        supported_layers = [18, 34, 50, 101, 152, 200]
+        assert layers in supported_layers, \
+            "supported layers are {} but input layer is {}".format(
+                supported_layers, layers)
+
+        if layers == 18:
+            depth = [2, 2, 2, 2]
+        elif layers == 34 or layers == 50:
+            depth = [3, 4, 6, 3]
+        elif layers == 101:
+            depth = [3, 4, 23, 3]
+        elif layers == 152:
+            depth = [3, 8, 36, 3]
+        elif layers == 200:
+            depth = [3, 12, 48, 3]
+        num_channels = [64, 256, 512,
+                        1024] if layers >= 50 else [64, 64, 128, 256]
+        num_filters = [64, 128, 256, 512]
+
+        self.conv1_1 = ConvBNLayer(
+            in_channels=in_channels,
+            out_channels=32,
+            kernel_size=3,
+            stride=1,
+            act='relu',
+            name="conv1_1")
+        self.conv1_2 = ConvBNLayer(
+            in_channels=32,
+            out_channels=32,
+            kernel_size=3,
+            stride=1,
+            act='relu',
+            name="conv1_2")
+        self.conv1_3 = ConvBNLayer(
+            in_channels=32,
+            out_channels=64,
+            kernel_size=3,
+            stride=1,
+            act='relu',
+            name="conv1_3")
+        self.pool2d_max = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+
+        self.block_list = []
+        if layers >= 50:
+            for block in range(len(depth)):
+                shortcut = False
+                for i in range(depth[block]):
+                    if layers in [101, 152, 200] and block == 2:
+                        if i == 0:
+                            conv_name = "res" + str(block + 2) + "a"
+                        else:
+                            conv_name = "res" + str(block + 2) + "b" + str(i)
+                    else:
+                        conv_name = "res" + str(block + 2) + chr(97 + i)
+
+                    if i == 0 and block != 0:
+                        stride = (2, 1)
+                    else:
+                        stride = (1, 1)
+                    bottleneck_block = self.add_sublayer(
+                        'bb_%d_%d' % (block, i),
+                        BottleneckBlock(
+                            in_channels=num_channels[block]
+                            if i == 0 else num_filters[block] * 4,
+                            out_channels=num_filters[block],
+                            stride=stride,
+                            shortcut=shortcut,
+                            if_first=block == i == 0,
+                            name=conv_name))
+                    shortcut = True
+                    self.block_list.append(bottleneck_block)
+                self.out_channels = num_filters[block]
+        else:
+            for block in range(len(depth)):
+                shortcut = False
+                for i in range(depth[block]):
+                    conv_name = "res" + str(block + 2) + chr(97 + i)
+                    if i == 0 and block != 0:
+                        stride = (2, 1)
+                    else:
+                        stride = (1, 1)
+
+                    basic_block = self.add_sublayer(
+                        'bb_%d_%d' % (block, i),
+                        BasicBlock(
+                            in_channels=num_channels[block]
+                            if i == 0 else num_filters[block],
+                            out_channels=num_filters[block],
+                            stride=stride,
+                            shortcut=shortcut,
+                            if_first=block == i == 0,
+                            name=conv_name))
+                    shortcut = True
+                    self.block_list.append(basic_block)
+                self.out_channels = num_filters[block]
+        self.out_pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
+
+    def forward(self, inputs):
+        y = self.conv1_1(inputs)
+        y = self.conv1_2(y)
+        y = self.conv1_3(y)
+        y = self.pool2d_max(y)
+        for block in self.block_list:
+            y = block(y)
+        y = self.out_pool(y)
+        return y