add new load dygraph func (#3088)

* add new load dygraph func

* update load_pretrain_params

* update load_dygrah_params

* Update save_load.py

* Update train.py

* Update save_load.py

* return {} when path is None

* return {} when path is None
This commit is contained in:
Double_V 2021-06-28 20:44:06 +08:00 committed by GitHub
parent 6f64faeab4
commit be181cb3bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 31 additions and 3 deletions

View File

@ -25,7 +25,7 @@ import paddle
from ppocr.utils.logging import get_logger
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
__all__ = ['init_model', 'save_model', 'load_dygraph_params']
def _mkdir_if_not_exist(path, logger):
@ -89,6 +89,34 @@ def init_model(config, model, optimizer=None, lr_scheduler=None):
return best_model_dict
def load_dygraph_params(config, model, logger, optimizer):
ckp = config['Global']['checkpoints']
if ckp and os.path.exists(ckp):
pre_best_model_dict = init_model(config, model, optimizer)
return pre_best_model_dict
else:
pm = config['Global']['pretrained_model']
if pm is None:
return {}
if not os.path.exists(pm) or not os.path.exists(pm + ".pdparams"):
logger.info(f"The pretrained_model {pm} does not exists!")
return {}
pm = pm if pm.endswith('.pdparams') else pm + '.pdparams'
params = paddle.load(pm)
state_dict = model.state_dict()
new_state_dict = {}
for k1, k2 in zip(state_dict.keys(), params.keys()):
if list(state_dict[k1].shape) == list(params[k2].shape):
new_state_dict[k1] = params[k2]
else:
logger.info(
f"The shape of model params {k1} {state_dict[k1].shape} not matched with loaded params {k2} {params[k2].shape} !"
)
model.set_state_dict(new_state_dict)
logger.info(f"loaded pretrained_model successful from {pm}")
return {}
def save_model(model,
optimizer,
model_path,

View File

@ -35,7 +35,7 @@ from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
from ppocr.utils.save_load import init_model, load_dygraph_params
import tools.program as program
dist.get_world_size()
@ -97,7 +97,7 @@ def main(config, device, logger, vdl_writer):
# build metric
eval_class = build_metric(config['Metric'])
# load pretrain model
pre_best_model_dict = init_model(config, model, optimizer)
pre_best_model_dict = load_dygraph_params(config, model, logger, optimizer)
logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
if valid_dataloader is not None: