refine
This commit is contained in:
parent
de6bc4458b
commit
c0492e02c7
|
@ -69,7 +69,7 @@ class BaseModel(nn.Layer):
|
|||
|
||||
self.return_all_feats = config.get("return_all_feats", False)
|
||||
|
||||
def forward(self, x, data=None, mode='Train'):
|
||||
def forward(self, x, data=None):
|
||||
y = dict()
|
||||
if self.use_transform:
|
||||
x = self.transform(x)
|
||||
|
@ -78,13 +78,7 @@ class BaseModel(nn.Layer):
|
|||
if self.use_neck:
|
||||
x = self.neck(x)
|
||||
y["neck_out"] = x
|
||||
if data is None:
|
||||
x = self.head(x)
|
||||
else:
|
||||
if mode == 'Eval' or mode == 'Test':
|
||||
x = self.head(x, targets=data, mode=mode)
|
||||
else:
|
||||
x = self.head(x, targets=data)
|
||||
x = self.head(x, targets=data)
|
||||
y["head_out"] = x
|
||||
if self.return_all_feats:
|
||||
return y
|
||||
|
|
|
@ -43,7 +43,7 @@ class ClsHead(nn.Layer):
|
|||
initializer=nn.initializer.Uniform(-stdv, stdv)),
|
||||
bias_attr=ParamAttr(name="fc_0.b_0"), )
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, targets=None):
|
||||
x = self.pool(x)
|
||||
x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
|
||||
x = self.fc(x)
|
||||
|
|
|
@ -106,7 +106,7 @@ class DBHead(nn.Layer):
|
|||
def step_function(self, x, y):
|
||||
return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y)))
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, targets=None):
|
||||
shrink_maps = self.binarize(x)
|
||||
if not self.training:
|
||||
return {'maps': shrink_maps}
|
||||
|
|
|
@ -109,7 +109,7 @@ class EASTHead(nn.Layer):
|
|||
act=None,
|
||||
name="f_geo")
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, targets=None):
|
||||
f_det = self.det_conv1(x)
|
||||
f_det = self.det_conv2(f_det)
|
||||
f_score = self.score_conv(f_det)
|
||||
|
|
|
@ -116,7 +116,7 @@ class SASTHead(nn.Layer):
|
|||
self.head1 = SAST_Header1(in_channels)
|
||||
self.head2 = SAST_Header2(in_channels)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, targets=None):
|
||||
f_score, f_border = self.head1(x)
|
||||
f_tvo, f_tco = self.head2(x)
|
||||
|
||||
|
|
|
@ -220,7 +220,7 @@ class PGHead(nn.Layer):
|
|||
weight_attr=ParamAttr(name="conv_f_direc{}".format(4)),
|
||||
bias_attr=False)
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, targets=None):
|
||||
f_score = self.conv_f_score1(x)
|
||||
f_score = self.conv_f_score2(f_score)
|
||||
f_score = self.conv_f_score3(f_score)
|
||||
|
|
|
@ -44,7 +44,7 @@ class CTCHead(nn.Layer):
|
|||
bias_attr=bias_attr)
|
||||
self.out_channels = out_channels
|
||||
|
||||
def forward(self, x, labels=None):
|
||||
def forward(self, x, targets=None):
|
||||
predicts = self.fc(x)
|
||||
if not self.training:
|
||||
predicts = F.softmax(predicts, axis=2)
|
||||
|
|
|
@ -53,7 +53,7 @@ class TableAttentionHead(nn.Layer):
|
|||
input_ont_hot = F.one_hot(input_char, onehot_dim)
|
||||
return input_ont_hot
|
||||
|
||||
def forward(self, inputs, targets=None, mode='Train'):
|
||||
def forward(self, inputs, targets=None):
|
||||
# if and else branch are both needed when you want to assign a variable
|
||||
# if you modify the var in just one branch, then the modification will not work.
|
||||
fea = inputs[-1]
|
||||
|
@ -67,7 +67,7 @@ class TableAttentionHead(nn.Layer):
|
|||
|
||||
hidden = paddle.zeros((batch_size, self.hidden_size))
|
||||
output_hiddens = []
|
||||
if mode == 'Train' and targets is not None:
|
||||
if self.training and targets is not None:
|
||||
structure = targets[0]
|
||||
for i in range(self.max_elem_length+1):
|
||||
elem_onehots = self._char_to_onehot(
|
||||
|
|
|
@ -81,7 +81,7 @@ def main(config, device, logger, vdl_writer):
|
|||
batch = transform(data, ops)
|
||||
images = np.expand_dims(batch[0], axis=0)
|
||||
images = paddle.to_tensor(images)
|
||||
preds = model(images, data=None, mode='Test')
|
||||
preds = model(images)
|
||||
post_result = post_process_class(preds)
|
||||
res_html_code = post_result['res_html_code']
|
||||
res_loc = post_result['res_loc']
|
||||
|
|
Loading…
Reference in New Issue