fix comments and transform to transforms
This commit is contained in:
parent
5f2f08a09c
commit
c0b4cefdcb
|
@ -10,7 +10,7 @@ Global:
|
|||
# if pretrained_model is saved in static mode, load_static_weights must set to True
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
|
||||
checkpoints: #./output/det_db_0.001_DiceLoss_256_pp_config_2.0b_4gpu/best_accuracy
|
||||
save_inference_dir:
|
||||
use_visualdl: False
|
|
@ -16,7 +16,7 @@ from __future__ import division
|
|||
from __future__ import print_function
|
||||
|
||||
from paddle import nn
|
||||
from ppocr.modeling.transform import build_transform
|
||||
from ppocr.modeling.transforms import build_transform
|
||||
from ppocr.modeling.backbones import build_backbone
|
||||
from ppocr.modeling.necks import build_neck
|
||||
from ppocr.modeling.heads import build_head
|
||||
|
|
|
@ -111,6 +111,7 @@ class MobileNetV3(nn.Layer):
|
|||
i = 0
|
||||
inplanes = make_divisible(inplanes * scale)
|
||||
for (k, exp, c, se, nl, s) in cfg:
|
||||
se = se and not self.disable_se
|
||||
if s == 2 and i > 2:
|
||||
self.out_channels.append(inplanes)
|
||||
self.stages.append(nn.Sequential(*block_list))
|
||||
|
@ -231,7 +232,7 @@ class ResidualUnit(nn.Layer):
|
|||
if_act=True,
|
||||
act=act,
|
||||
name=name + "_depthwise")
|
||||
if self.if_se and not self.disable_se:
|
||||
if self.if_se:
|
||||
self.mid_se = SEModule(mid_channels, name=name + "_se")
|
||||
self.linear_conv = ConvBNLayer(
|
||||
in_channels=mid_channels,
|
||||
|
@ -246,7 +247,7 @@ class ResidualUnit(nn.Layer):
|
|||
def forward(self, inputs):
|
||||
x = self.expand_conv(inputs)
|
||||
x = self.bottleneck_conv(x)
|
||||
if self.if_se and not self.disable_se:
|
||||
if self.if_se:
|
||||
x = self.mid_se(x)
|
||||
x = self.linear_conv(x)
|
||||
if self.if_shortcut:
|
||||
|
|
|
@ -33,13 +33,14 @@ class DBPostProcess(object):
|
|||
box_thresh=0.7,
|
||||
max_candidates=1000,
|
||||
unclip_ratio=2.0,
|
||||
use_dilation=False,
|
||||
**kwargs):
|
||||
self.thresh = thresh
|
||||
self.box_thresh = box_thresh
|
||||
self.max_candidates = max_candidates
|
||||
self.unclip_ratio = unclip_ratio
|
||||
self.min_size = 3
|
||||
self.dilation_kernel = np.array([[1, 1], [1, 1]])
|
||||
self.dilation_kernel = None if not use_dilation else [[1, 1], [1, 1]]
|
||||
|
||||
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
||||
'''
|
||||
|
@ -140,9 +141,12 @@ class DBPostProcess(object):
|
|||
boxes_batch = []
|
||||
for batch_index in range(pred.shape[0]):
|
||||
height, width = shape_list[batch_index]
|
||||
mask = cv2.dilate(
|
||||
np.array(segmentation[batch_index]).astype(np.uint8),
|
||||
self.dilation_kernel)
|
||||
if self.dilation_kernel is not None:
|
||||
mask = cv2.dilate(
|
||||
np.array(segmentation[batch_index]).astype(np.uint8),
|
||||
self.dilation_kernel)
|
||||
else:
|
||||
mask = segmentation[batch_index]
|
||||
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
||||
width, height)
|
||||
|
||||
|
|
Loading…
Reference in New Issue