add visualize code to predict_eval
18
README.md
|
@ -11,7 +11,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
|
||||||
|
|
||||||
## **超轻量级中文OCR体验**
|
## **超轻量级中文OCR体验**
|
||||||
|
|
||||||
![](./doc/imgs_draw/11.jpg)
|
![](doc/imgs_results/11.jpg)
|
||||||
|
|
||||||
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)。
|
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)。
|
||||||
|
|
||||||
|
@ -97,14 +97,14 @@ PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识
|
||||||
|
|
||||||
<a name="效果展示"></a>
|
<a name="效果展示"></a>
|
||||||
## 效果展示
|
## 效果展示
|
||||||
![](./doc/imgs_draw/1.jpg)
|
![](doc/imgs_results/1.jpg)
|
||||||
![](./doc/imgs_draw/7.jpg)
|
![](doc/imgs_results/7.jpg)
|
||||||
![](./doc/imgs_draw/12.jpg)
|
![](doc/imgs_results/12.jpg)
|
||||||
![](./doc/imgs_draw/4.jpg)
|
![](doc/imgs_results/4.jpg)
|
||||||
![](./doc/imgs_draw/6.jpg)
|
![](doc/imgs_results/6.jpg)
|
||||||
![](./doc/imgs_draw/9.jpg)
|
![](doc/imgs_results/9.jpg)
|
||||||
![](./doc/imgs_draw/16.png)
|
![](doc/imgs_results/16.png)
|
||||||
![](./doc/imgs_draw/22.jpg)
|
![](doc/imgs_results/22.jpg)
|
||||||
|
|
||||||
|
|
||||||
## 参考文献
|
## 参考文献
|
||||||
|
|
Before Width: | Height: | Size: 129 KiB After Width: | Height: | Size: 129 KiB |
Before Width: | Height: | Size: 94 KiB After Width: | Height: | Size: 94 KiB |
Before Width: | Height: | Size: 236 KiB After Width: | Height: | Size: 236 KiB |
Before Width: | Height: | Size: 180 KiB After Width: | Height: | Size: 180 KiB |
Before Width: | Height: | Size: 305 KiB After Width: | Height: | Size: 305 KiB |
Before Width: | Height: | Size: 141 KiB After Width: | Height: | Size: 141 KiB |
Before Width: | Height: | Size: 329 KiB After Width: | Height: | Size: 329 KiB |
Before Width: | Height: | Size: 201 KiB After Width: | Height: | Size: 201 KiB |
Before Width: | Height: | Size: 148 KiB After Width: | Height: | Size: 148 KiB |
Before Width: | Height: | Size: 132 KiB After Width: | Height: | Size: 132 KiB |
Before Width: | Height: | Size: 96 KiB After Width: | Height: | Size: 96 KiB |
Before Width: | Height: | Size: 105 KiB After Width: | Height: | Size: 105 KiB |
Before Width: | Height: | Size: 115 KiB After Width: | Height: | Size: 115 KiB |
Before Width: | Height: | Size: 151 KiB After Width: | Height: | Size: 151 KiB |
Before Width: | Height: | Size: 60 KiB After Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 125 KiB After Width: | Height: | Size: 125 KiB |
Before Width: | Height: | Size: 123 KiB After Width: | Height: | Size: 123 KiB |
|
@ -22,6 +22,10 @@ import copy
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import math
|
import math
|
||||||
import time
|
import time
|
||||||
|
from ppocr.utils.utility import get_image_file_list
|
||||||
|
from PIL import Image
|
||||||
|
from tools.infer.utility import draw_ocr
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
class TextSystem(object):
|
class TextSystem(object):
|
||||||
|
@ -99,8 +103,9 @@ def sorted_boxes(dt_boxes):
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
args = utility.parse_args()
|
args = utility.parse_args()
|
||||||
image_file_list = utility.get_image_file_list(args.image_dir)
|
image_file_list = get_image_file_list(args.image_dir)
|
||||||
text_sys = TextSystem(args)
|
text_sys = TextSystem(args)
|
||||||
|
is_visualize = True
|
||||||
for image_file in image_file_list:
|
for image_file in image_file_list:
|
||||||
img = cv2.imread(image_file)
|
img = cv2.imread(image_file)
|
||||||
if img is None:
|
if img is None:
|
||||||
|
@ -114,8 +119,22 @@ if __name__ == "__main__":
|
||||||
dt_boxes_final = []
|
dt_boxes_final = []
|
||||||
for dno in range(dt_num):
|
for dno in range(dt_num):
|
||||||
text, score = rec_res[dno]
|
text, score = rec_res[dno]
|
||||||
if score >= 0:
|
if score >= 0.5:
|
||||||
text_str = "%s, %.3f" % (text, score)
|
text_str = "%s, %.3f" % (text, score)
|
||||||
print(text_str)
|
print(text_str)
|
||||||
dt_boxes_final.append(dt_boxes[dno])
|
dt_boxes_final.append(dt_boxes[dno])
|
||||||
utility.draw_text_det_res(dt_boxes_final, image_file)
|
|
||||||
|
if is_visualize:
|
||||||
|
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
|
||||||
|
boxes = dt_boxes
|
||||||
|
txts = [rec_res[i][0] for i in range(len(rec_res))]
|
||||||
|
scores = [rec_res[i][1] for i in range(len(rec_res))]
|
||||||
|
|
||||||
|
draw_img = draw_ocr(
|
||||||
|
image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
|
||||||
|
draw_img_save = "./doc/imgs_results/"
|
||||||
|
if not os.path.exists(draw_img_save):
|
||||||
|
os.makedirs(draw_img_save)
|
||||||
|
cv2.imwrite(
|
||||||
|
os.path.join(draw_img_save, os.path.basename(image_file)),
|
||||||
|
draw_img)
|
||||||
|
|
|
@ -112,36 +112,70 @@ def draw_text_det_res(dt_boxes, img_path):
|
||||||
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
cv2.imwrite("./output/%s" % img_name_pure, src_im)
|
||||||
|
|
||||||
|
|
||||||
def draw_ocr(image, boxes, txts, scores, draw_txt):
|
def resize_img(img, input_size=600):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
img = np.array(img)
|
||||||
|
im_shape = img.shape
|
||||||
|
im_size_min = np.min(im_shape[0:2])
|
||||||
|
im_size_max = np.max(im_shape[0:2])
|
||||||
|
im_scale = float(input_size) / float(im_size_max)
|
||||||
|
im = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
|
||||||
|
return im
|
||||||
|
|
||||||
|
|
||||||
|
def draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5):
|
||||||
from PIL import Image, ImageDraw, ImageFont
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
|
||||||
w, h = image.size
|
w, h = image.size
|
||||||
img = image.copy()
|
img = image.copy()
|
||||||
draw = ImageDraw.Draw(img)
|
draw = ImageDraw.Draw(img)
|
||||||
|
|
||||||
for (box, txt) in zip(boxes, txts):
|
for (box, score) in zip(boxes, scores):
|
||||||
|
if score < drop_score:
|
||||||
|
continue
|
||||||
draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
|
draw.line([(box[0][0], box[0][1]), (box[1][0], box[1][1])], fill='red')
|
||||||
draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
|
draw.line([(box[1][0], box[1][1]), (box[2][0], box[2][1])], fill='red')
|
||||||
draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
|
draw.line([(box[2][0], box[2][1]), (box[3][0], box[3][1])], fill='red')
|
||||||
draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
|
draw.line([(box[3][0], box[3][1]), (box[0][0], box[0][1])], fill='red')
|
||||||
|
draw.line(
|
||||||
|
[(box[0][0] - 1, box[0][1] + 1), (box[1][0] - 1, box[1][1] + 1)],
|
||||||
|
fill='red')
|
||||||
|
draw.line(
|
||||||
|
[(box[1][0] - 1, box[1][1] + 1), (box[2][0] - 1, box[2][1] + 1)],
|
||||||
|
fill='red')
|
||||||
|
draw.line(
|
||||||
|
[(box[2][0] - 1, box[2][1] + 1), (box[3][0] - 1, box[3][1] + 1)],
|
||||||
|
fill='red')
|
||||||
|
draw.line(
|
||||||
|
[(box[3][0] - 1, box[3][1] + 1), (box[0][0] - 1, box[0][1] + 1)],
|
||||||
|
fill='red')
|
||||||
|
|
||||||
if draw_txt:
|
if draw_txt:
|
||||||
txt_color = (0, 0, 0)
|
txt_color = (0, 0, 0)
|
||||||
|
img = np.array(resize_img(img))
|
||||||
blank_img = np.ones(shape=[h, 800], dtype=np.int8) * 255
|
_h = img.shape[0]
|
||||||
|
blank_img = np.ones(shape=[_h, 600], dtype=np.int8) * 255
|
||||||
blank_img = Image.fromarray(blank_img).convert("RGB")
|
blank_img = Image.fromarray(blank_img).convert("RGB")
|
||||||
draw_txt = ImageDraw.Draw(blank_img)
|
draw_txt = ImageDraw.Draw(blank_img)
|
||||||
|
|
||||||
font_size = 30
|
font_size = 20
|
||||||
gap = 40 if h // len(txts) >= font_size else h // len(txts)
|
gap = 20
|
||||||
|
title = "index text score"
|
||||||
|
font = ImageFont.truetype(
|
||||||
|
"./doc/simfang.ttf", font_size, encoding="utf-8")
|
||||||
|
|
||||||
for i, txt in enumerate(txts):
|
draw_txt.text((20, 0), title, txt_color, font=font)
|
||||||
|
count = 0
|
||||||
|
for idx, txt in enumerate(txts):
|
||||||
|
if scores[idx] < drop_score:
|
||||||
|
continue
|
||||||
font = ImageFont.truetype(
|
font = ImageFont.truetype(
|
||||||
"./doc/simfang.TTF", font_size, encoding="utf-8")
|
"./doc/simfang.ttf", font_size, encoding="utf-8")
|
||||||
new_txt = str(i) + ': ' + txt + ' ' + str(scores[i])
|
new_txt = str(count) + ': ' + txt + ' ' + str(scores[count])
|
||||||
draw_txt.text((20, gap * (i + 1)), new_txt, txt_color, font=font)
|
draw_txt.text(
|
||||||
|
(20, gap * (count + 1)), new_txt, txt_color, font=font)
|
||||||
|
count += 1
|
||||||
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
|
img = np.concatenate([np.array(img), np.array(blank_img)], axis=1)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
|
|