diff --git a/test/test.sh b/test/test.sh index 927abd19..6c584810 100644 --- a/test/test.sh +++ b/test/test.sh @@ -102,14 +102,11 @@ for train_model in ${train_model_list[*]}; do for gpu in ${gpu_list[*]}; do use_gpu=True if [ ${gpu} = "-1" ];then - lanuch="" use_gpu=False env="" elif [ ${#gpu} -le 1 ];then - launch="" env="CUDA_VISIBLE_DEVICES=${gpu}" else - launch="-m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu}" IFS="," array=(${gpu}) env="CUDA_VISIBLE_DEVICES=${array[0]}" @@ -139,8 +136,13 @@ for train_model in ${train_model_list[*]}; do pretrain="./pretrain_models/MobileNetV3_large_x0_5_pretrained" fi save_log="${log_path}/${model_name}_${slim_trainer}_autocast_${auto_cast}_gpuid_${gpu}" - command="${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2" - ${python} ${launch} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2 + if [ ${#gpu} -le 2 ];then + command="${python} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2" + ${python} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2 + else + command="${python} -m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2" + ${python} -m paddle.distributed.launch --log_dir=./debug/ --gpus ${gpu} ${trainer} -c ${yml_file} -o Global.epoch_num=${epoch} Global.eval_batch_step=${eval_batch_step} Global.auto_cast=${auto_cast} Global.pretrained_model=${pretrain} Global.save_model_dir=${save_log} Global.use_gpu=${use_gpu} Train.loader.batch_size_per_card=2 + fi status_check $? "${trainer}" "${command}" "${status_log}" command="${python} ${export_model} -c ${yml_file} -o Global.pretrained_model=${save_log}/latest Global.save_inference_dir=${save_log}_infer/ Global.save_model_dir=${save_log}"