Merge remote-tracking branch 'upstream/dygraph' into dy1

This commit is contained in:
Leif 2021-01-12 16:41:10 +08:00
commit c2cf53519e
14 changed files with 133 additions and 77 deletions

View File

@ -8,7 +8,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 静态图版本develop分支
**近期更新**
- 2021.1.4 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题总数142个,每周一都会更新,欢迎大家持续关注。
- 2021.1.11 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题总数147个,每周一都会更新,欢迎大家持续关注。
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md)辅助开发者高效完成标注任务输出格式与PP-OCR训练任务完美衔接。
- 2020.9.22 更新PP-OCR技术文章https://arxiv.org/abs/2009.09941
@ -102,7 +102,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- FAQ
- [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md)
- [【理论篇】OCR通用31个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战101个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战106个问题](./doc/doc_ch/FAQ.md)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)

View File

@ -52,7 +52,7 @@ If you save the model in another location, please modify the address of the mode
```
bg_generator:
pretrain: style_text_rec/bg_generator
pretrain: style_text_models/bg_generator
...
text_generator:
pretrain: style_text_models/text_generator

View File

@ -102,6 +102,7 @@ Train:
drop_last: False
batch_size_per_card: 16
num_workers: 8
use_shared_memory: False
Eval:
dataset:
@ -128,4 +129,5 @@ Eval:
shuffle: False
drop_last: False
batch_size_per_card: 1 # must be 1
num_workers: 8
num_workers: 8
use_shared_memory: False

View File

@ -76,6 +76,7 @@ Train:
batch_size_per_card: 256
drop_last: True
num_workers: 8
use_shared_memory: False
Eval:
dataset:
@ -96,3 +97,4 @@ Eval:
drop_last: False
batch_size_per_card: 256
num_workers: 4
use_shared_memory: False

View File

@ -47,18 +47,20 @@ public:
class ResizeImgType0 {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, int max_size_len,
float &ratio_h, float &ratio_w);
float &ratio_h, float &ratio_w, bool use_tensorrt);
};
class CrnnResizeImg {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
bool use_tensorrt = false,
const std::vector<int> &rec_image_shape = {3, 32, 320});
};
class ClsResizeImg {
public:
virtual void Run(const cv::Mat &img, cv::Mat &resize_img,
bool use_tensorrt = false,
const std::vector<int> &rec_image_shape = {3, 48, 192});
};

View File

@ -77,7 +77,7 @@ int main(int argc, char **argv) {
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "Cost"
std::cout << "Cost "
<< double(duration.count()) *
std::chrono::microseconds::period::num /
std::chrono::microseconds::period::den

View File

@ -25,7 +25,7 @@ cv::Mat Classifier::Run(cv::Mat &img) {
int index = 0;
float wh_ratio = float(img.cols) / float(img.rows);
this->resize_op_.Run(img, resize_img, cls_image_shape);
this->resize_op_.Run(img, resize_img, this->use_tensorrt_, cls_image_shape);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);

View File

@ -61,7 +61,8 @@ void DBDetector::Run(cv::Mat &img,
cv::Mat srcimg;
cv::Mat resize_img;
img.copyTo(srcimg);
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w);
this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);

View File

@ -33,7 +33,7 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
float wh_ratio = float(crop_img.cols) / float(crop_img.rows);
this->resize_op_.Run(crop_img, resize_img, wh_ratio);
this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);
this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
this->is_scale_);

View File

@ -60,7 +60,8 @@ void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
}
void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
int max_size_len, float &ratio_h, float &ratio_w) {
int max_size_len, float &ratio_h, float &ratio_w,
bool use_tensorrt) {
int w = img.cols;
int h = img.rows;
@ -89,14 +90,19 @@ void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
resize_w = 32;
else
resize_w = (resize_w / 32) * 32;
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_h = float(resize_h) / float(h);
ratio_w = float(resize_w) / float(w);
if (!use_tensorrt) {
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
ratio_h = float(resize_h) / float(h);
ratio_w = float(resize_w) / float(w);
} else {
cv::resize(img, resize_img, cv::Size(640, 640));
ratio_h = float(640) / float(h);
ratio_w = float(640) / float(w);
}
}
void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
bool use_tensorrt,
const std::vector<int> &rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
@ -111,12 +117,27 @@ void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
resize_w = imgW;
else
resize_w = int(ceilf(imgH * ratio));
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
if (!use_tensorrt) {
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
{127, 127, 127});
} else {
int k = int(img.cols * 32 / img.rows);
if (k >= 100) {
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f,
cv::INTER_LINEAR);
} else {
cv::resize(img, resize_img, cv::Size(k, 32), 0.f, 0.f, cv::INTER_LINEAR);
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, int(100 - k),
cv::BORDER_CONSTANT, {127, 127, 127});
}
}
}
void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
bool use_tensorrt,
const std::vector<int> &rec_image_shape) {
int imgC, imgH, imgW;
imgC = rec_image_shape[0];
@ -130,11 +151,15 @@ void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
else
resize_w = int(ceilf(imgH * ratio));
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
if (resize_w < imgW) {
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
if (!use_tensorrt) {
cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
cv::INTER_LINEAR);
if (resize_w < imgW) {
cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
}
} else {
cv::resize(img, resize_img, cv::Size(100, 32), 0.f, 0.f, cv::INTER_LINEAR);
}
}

View File

@ -9,49 +9,47 @@
## PaddleOCR常见问题汇总(持续更新)
* [近期更新2021.1.4](#近期更新)
* [近期更新2021.1.11](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用31个问题](#OCR通用问题)
* [基础知识7题](#基础知识)
* [数据集7题](#数据集2)
* [模型训练调优17题](#模型训练调优2)
* [【实战篇】PaddleOCR实战101个问题](#PaddleOCR实战问题)
* [使用咨询31题](#使用咨询)
* [【实战篇】PaddleOCR实战106个问题](#PaddleOCR实战问题)
* [使用咨询36题](#使用咨询)
* [数据集17题](#数据集3)
* [模型训练调优26题](#模型训练调优3)
* [预测部署27题](#预测部署3)
<a name="近期更新"></a>
## 近期更新2021.1.4
## 近期更新2021.1.11
#### Q3.1.29: PPOCRLabel创建矩形框时只能拖出正方形如何进行矩形标注
**A** 取消勾选:“编辑”-“正方形标注”
#### Q3.1.32 能否修改StyleText配置文件中的分辨率
#### Q3.1.30: Style-Text 如何不文字风格迁移,就像普通文本生成程序一样默认字体直接输出到分割的背景图?
**A**StyleText目前的训练数据主要是高度32的图片建议不要改变高度。未来我们会支持更丰富的分辨率。
**A** 使用image_synth模式会输出fake_bg.jpg即为背景图。如果想要批量提取背景可以稍微修改一下代码将fake_bg保存下来即可。要修改的位置
https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/StyleText/engine/synthesisers.py#L68
#### Q3.1.33 StyleText是否可以更换字体文件
#### Q3.1.31: 怎么输出网络结构以及每层的参数信息?
**A**StyleText项目中的字体文件为标准字体主要用作模型的输入部分不能够修改。
StyleText的用途主要是提取style_image中的字体、背景等style信息根据语料生成同样style的图片。
**A** 可以使用 `paddle.summary` 具体参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/api/paddle/hapi/model_summary/summary_cn.html#summary。
#### Q3.1.34 StyleText批量生成图片为什么没有输出
#### Q3.4.26: 目前paddle hub serving 只支持 imgpath如果我想用imgurl 去哪里改呢?
**A**:需要检查以下您配置文件中的路径是否都存在。尤其要注意的是[label_file配置](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/StyleText/README_ch.md#%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8B)。
如果您使用的style_image输入没有label信息您依然需要提供一个图片文件列表。
**A** 图片是在这里读取的https://github.com/PaddlePaddle/PaddleOCR/blob/67ef25d593c4eabfaaceb22daade4577f53bed81/deploy/hubserving/ocr_system/module.py#L55
可以参考下面的写法将url path转化为np arrayhttps://cloud.tencent.com/developer/article/1467840
```
response = request.urlopen('http://i1.whymtj.com/uploads/tu/201902/9999/52491ae4ba.jpg')
img_array = np.array(bytearray(response.read()), dtype=np.uint8)
img = cv.imdecode(img_array, -1)
```
#### Q3.1.35 怎样把OCR输出的结果组成有意义的语句呢
#### Q3.4.27: C++ 端侧部署可以只对OCR的检测部署吗
**A**OCR输出的结果包含坐标信息和文字内容两部分。如果您不关心文字的顺序那么可以直接按box的序号连起来。
如果需要将文字按照一定的顺序排列,则需要您设定一些规则,对文字的坐标进行处理,例如按照坐标从上到下,从左到右连接识别结果。
对于一些有规律的垂类场景,可以设定模板,根据位置、内容进行匹配。
例如识别身份证照片,可以先匹配"姓名""性别"等关键字,根据这些关键字的坐标去推测其他信息的位置,再与识别的结果匹配。
**A** 可以的识别和检测模块是解耦的。如果想对检测部署需要自己修改一下main函数
只保留检测相关就可以:https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/deploy/cpp_infer/src/main.cpp#L72
#### Q3.1.36 如何识别竹简上的古文?
**A**对于字符都是普通的汉字字符的情况只要标注足够的数据finetune模型就可以了。如果数据量不足您可以尝试StyleText工具。
而如果使用的字符是特殊的古文字、甲骨文、象形文字等,那么首先需要构建一个古文字的字典,之后再进行训练。
<a name="OCR精选10个问题"></a>
@ -161,7 +159,7 @@ img = cv.imdecode(img_array, -1)
**A**端到端在文字分布密集的业务场景效率会比较有保证精度的话看自己业务数据积累情况如果行级别的识别数据积累比较多的话two-stage会比较好。百度的落地场景比如工业仪表识别、车牌识别都用到端到端解决方案。
#### Q2.1.4 印章如何识别
**A**: 1. 使用带tps的识别网络或abcnet,2.使用极坐标变换将图片拉平之后使用crnn
**A**1. 使用带tps的识别网络或abcnet,2.使用极坐标变换将图片拉平之后使用crnn
#### Q2.1.5 多语言的字典里是混合了不同的语种,这个是有什么讲究吗?统一到一个字典里会对精度造成多大的损失?
**A**统一到一个字典里会造成最后一层FC过大增加模型大小。如果有特殊需求的话可以把需要的几种语言合并字典训练模型合并字典之后如果引入过多的形近字可能会造成精度损失字符平衡的问题可能也需要考虑一下。在PaddleOCR里暂时将语言字典分开。
@ -198,11 +196,11 @@ img = cv.imdecode(img_array, -1)
#### Q2.2.6: 当训练数据量少时,如何获取更多的数据?
**A**: 当训练数据量少时可以尝试以下三种方式获取更多的数据1人工采集更多的训练数据最直接也是最有效的方式。2基于PIL和opencv基本图像处理或者变换。例如PIL中ImageFont, Image, ImageDraw三个模块将文字写到背景中opencv的旋转仿射变换高斯滤波等。3利用数据生成算法合成数据例如pix2pix等算法。
**A**当训练数据量少时可以尝试以下三种方式获取更多的数据1人工采集更多的训练数据最直接也是最有效的方式。2基于PIL和opencv基本图像处理或者变换。例如PIL中ImageFont, Image, ImageDraw三个模块将文字写到背景中opencv的旋转仿射变换高斯滤波等。3利用数据生成算法合成数据例如pix2pix等算法。
#### Q2.2.7: 论文《Editing Text in the Wild》中文本合成方法SRNet有什么特点
**A**: SRNet是借鉴GAN中图像到图像转换、风格迁移的想法合成文本数据。不同于通用GAN的方法只选择一个分支SRNet将文本合成任务分解为三个简单的子模块提升合成数据的效果。这三个子模块为不带背景的文本风格迁移模块、背景抽取模块和融合模块。PaddleOCR计划将在2020年12月中旬开源基于SRNet的实用模型。
**A**SRNet是借鉴GAN中图像到图像转换、风格迁移的想法合成文本数据。不同于通用GAN的方法只选择一个分支SRNet将文本合成任务分解为三个简单的子模块提升合成数据的效果。这三个子模块为不带背景的文本风格迁移模块、背景抽取模块和融合模块。PaddleOCR计划将在2020年12月中旬开源基于SRNet的实用模型。
<a name="模型训练调优2"></a>
### 模型训练调优
@ -352,7 +350,7 @@ img = cv.imdecode(img_array, -1)
#### Q3.1.13:识别模型框出来的位置太紧凑,会丢失边缘的文字信息,导致识别错误
**A** 可以在命令中加入 --det_db_unclip_ratio ,参数[定义位置](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/tools/infer/utility.py#L48)这个参数是检测后处理时控制文本框大小的默认1.6可以尝试改成2.5或者更大,反之,如果觉得文本框不够紧凑,也可以把该参数调小。
**A**:可以在命令中加入 --det_db_unclip_ratio ,参数[定义位置](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/tools/infer/utility.py#L48)这个参数是检测后处理时控制文本框大小的默认1.6可以尝试改成2.5或者更大,反之,如果觉得文本框不够紧凑,也可以把该参数调小。
#### Q3.1.14:英文手写体识别有计划提供的预训练模型吗?
@ -416,7 +414,7 @@ python3 -m pip install paddlepaddle-gpu==2.0.0rc1 -i https://mirror.baidu.com/py
#### Q3.1.24: PaddleOCR develop分支和dygraph分支的区别
**A** 目前PaddleOCR有四个分支分别是
**A**目前PaddleOCR有四个分支分别是
- develop基于Paddle静态图开发的分支推荐使用paddle1.8 或者2.0版本该分支具备完善的模型训练、预测、推理部署、量化裁剪等功能领先于release/1.1分支。
- release/1.1PaddleOCR 发布的第一个稳定版本,基于静态图开发,具备完善的训练、预测、推理部署、量化裁剪等功能。
@ -429,34 +427,59 @@ python3 -m pip install paddlepaddle-gpu==2.0.0rc1 -i https://mirror.baidu.com/py
#### Q3.1.25: 使用dygraph分支在docker中训练PaddleOCR的时候数据路径没有任何问题但是一直报错`reader rasied an exception`,这是为什么呢?
**A** 创建docker的时候`/dev/shm`的默认大小为64M如果使用多进程读取数据共享内存可能不够因此需要给`/dev/shm`分配更大的空间在创建docker的时候传入`--shm-size=8g`表示给`/dev/shm`分配8g的空间。
**A**创建docker的时候`/dev/shm`的默认大小为64M如果使用多进程读取数据共享内存可能不够因此需要给`/dev/shm`分配更大的空间在创建docker的时候传入`--shm-size=8g`表示给`/dev/shm`分配8g的空间。
#### Q3.1.26: 在repo中没有找到Lite和PaddleServing相关的部署教程这是在哪里呢
**A** 目前PaddleOCR的默认分支为dygraph关于Lite和PaddleLite的动态图部署还在适配中如果希望在Lite端或者使用PaddleServing部署推荐使用develop分支静态图的代码。
**A**目前PaddleOCR的默认分支为dygraph关于Lite和PaddleLite的动态图部署还在适配中如果希望在Lite端或者使用PaddleServing部署推荐使用develop分支静态图的代码。
#### Q3.1.27: 如何可视化acc,loss曲线图,模型网络结构图等?
**A** 在配置文件里有`use_visualdl`的参数设置为True即可更多的使用命令可以参考[VisualDL使用指南](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/guides/03_VisualDL/visualdl.html)。
**A**在配置文件里有`use_visualdl`的参数设置为True即可更多的使用命令可以参考[VisualDL使用指南](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/guides/03_VisualDL/visualdl.html)。
#### Q3.1.28: 在使用StyleText数据合成工具的时候报错`ModuleNotFoundError: No module named 'utils.config'`,这是为什么呢?
**A** 有2个解决方案
**A**有2个解决方案
- 在StyleText路径下面设置PYTHONPATH`export PYTHONPATH=./`
- 拉取最新的代码
#### Q3.1.29: PPOCRLabel创建矩形框时只能拖出正方形如何进行矩形标注
**A** 取消勾选:“编辑”-“正方形标注”
**A**取消勾选:“编辑”-“正方形标注”
#### Q3.1.30: Style-Text 如何不文字风格迁移,就像普通文本生成程序一样默认字体直接输出到分割的背景图?
**A** 使用image_synth模式会输出fake_bg.jpg即为背景图。如果想要批量提取背景可以稍微修改一下代码将fake_bg保存下来即可。要修改的位置
**A**使用image_synth模式会输出fake_bg.jpg即为背景图。如果想要批量提取背景可以稍微修改一下代码将fake_bg保存下来即可。要修改的位置
https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/StyleText/engine/synthesisers.py#L68
#### Q3.1.31: 怎么输出网络结构以及每层的参数信息?
**A** 可以使用 `paddle.summary` 具体参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/api/paddle/hapi/model_summary/summary_cn.html#summary。
**A**:可以使用 `paddle.summary` 具体参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/api/paddle/hapi/model_summary/summary_cn.html#summary。
#### Q3.1.32 能否修改StyleText配置文件中的分辨率
**A**StyleText目前的训练数据主要是高度32的图片建议不要改变高度。未来我们会支持更丰富的分辨率。
#### Q3.1.33 StyleText是否可以更换字体文件
**A**StyleText项目中的字体文件为标准字体主要用作模型的输入部分不能够修改。
StyleText的用途主要是提取style_image中的字体、背景等style信息根据语料生成同样style的图片。
#### Q3.1.34 StyleText批量生成图片为什么没有输出
**A**:需要检查以下您配置文件中的路径是否都存在。尤其要注意的是[label_file配置](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/StyleText/README_ch.md#%E5%BF%AB%E9%80%9F%E4%B8%8A%E6%89%8B)。
如果您使用的style_image输入没有label信息您依然需要提供一个图片文件列表。
#### Q3.1.35 怎样把OCR输出的结果组成有意义的语句呢
**A**OCR输出的结果包含坐标信息和文字内容两部分。如果您不关心文字的顺序那么可以直接按box的序号连起来。
如果需要将文字按照一定的顺序排列,则需要您设定一些规则,对文字的坐标进行处理,例如按照坐标从上到下,从左到右连接识别结果。
对于一些有规律的垂类场景,可以设定模板,根据位置、内容进行匹配。
例如识别身份证照片,可以先匹配"姓名""性别"等关键字,根据这些关键字的坐标去推测其他信息的位置,再与识别的结果匹配。
#### Q3.1.36 如何识别竹简上的古文?
**A**对于字符都是普通的汉字字符的情况只要标注足够的数据finetune模型就可以了。如果数据量不足您可以尝试StyleText工具。
而如果使用的字符是特殊的古文字、甲骨文、象形文字等,那么首先需要构建一个古文字的字典,之后再进行训练。
<a name="数据集3"></a>
### 数据集
@ -519,8 +542,8 @@ https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b5
#### Q3.2.11有哪些标注工具可以标注OCR数据集
**A**您可以参考https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/data_annotation_en.md
我们计划推出高效标注OCR数据的标注工具请您持续关注PaddleOCR的近期更新
**A**推荐您使用PPOCRLabel工具
您还可以参考https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/data_annotation_en.md
#### Q3.2.12一些特殊场景的数据识别效果差但是数据量很少不够用来finetune怎么办
@ -539,15 +562,15 @@ https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b5
#### Q3.2.15: 文本标注工具PPOCRLabel有什么特色
**A**: PPOCRLabel是一个半自动文本标注工具它使用基于PPOCR的中英文OCR模型预先预测文本检测和识别结果然后用户对上述结果进行校验和修正就行大大提高用户的标注效率。同时导出的标注结果直接适配PPOCR训练所需要的数据格式
**A**PPOCRLabel是一个半自动文本标注工具它使用基于PPOCR的中英文OCR模型预先预测文本检测和识别结果然后用户对上述结果进行校验和修正就行大大提高用户的标注效率。同时导出的标注结果直接适配PPOCR训练所需要的数据格式
#### Q3.2.16: 文本标注工具PPOCRLabel可以更换模型吗
**A**: PPOCRLabel中OCR部署方式采用的基于pip安装whl包快速推理可以参考相关文档更换模型路径进行特定任务的标注适配。基于pip安装whl包快速推理的文档如下https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/whl.md。
**A**PPOCRLabel中OCR部署方式采用的基于pip安装whl包快速推理可以参考相关文档更换模型路径进行特定任务的标注适配。基于pip安装whl包快速推理的文档如下https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/whl.md。
#### Q3.2.17: 文本标注工具PPOCRLabel支持的运行环境有哪些
**A**: PPOCRLabel可运行于Linux、Windows、MacOS等多种系统。操作步骤可以参考文档https://github.com/PaddlePaddle/PaddleOCR/blob/develop/PPOCRLabel/README.md
**A**PPOCRLabel可运行于Linux、Windows、MacOS等多种系统。操作步骤可以参考文档https://github.com/PaddlePaddle/PaddleOCR/blob/develop/PPOCRLabel/README.md
<a name="模型训练调优3"></a>
@ -660,15 +683,15 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
#### Q3.3.20: 文字检测时怎么模糊的数据增强?
**A**: 模糊的数据增强需要修改代码进行添加以DB为例参考[Normalize](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/operators.py#L60) ,添加模糊的增强就行
**A**模糊的数据增强需要修改代码进行添加以DB为例参考[Normalize](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/operators.py#L60) ,添加模糊的增强就行
#### Q3.3.21: 文字检测时怎么更改图片旋转的角度实现360度任意旋转
**A**: 将[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/iaa_augment.py#L64) 的(-10,10) 改为(-180,180)即可
**A**将[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/iaa_augment.py#L64) 的(-10,10) 改为(-180,180)即可
#### Q3.3.22: 训练数据的长宽比过大怎么修改shape
**A**: 识别修改[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yaml#L75) ,
**A**识别修改[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yaml#L75) ,
检测修改[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml#L85)
#### Q3.3.23检测模型训练或预测时出现elementwise_add报错
@ -677,15 +700,15 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
#### Q3.3.24: DB检测训练输入尺寸640可以改大一些吗
**A**: 不建议改大。检测模型训练输入尺寸是预处理中random crop后的尺寸并非直接将原图进行resize多数场景下这个尺寸并不小了改大后可能反而并不合适而且训练会变慢。另外代码里可能有的地方参数按照预设输入尺寸适配的改大后可能有隐藏风险。
**A**不建议改大。检测模型训练输入尺寸是预处理中random crop后的尺寸并非直接将原图进行resize多数场景下这个尺寸并不小了改大后可能反而并不合适而且训练会变慢。另外代码里可能有的地方参数按照预设输入尺寸适配的改大后可能有隐藏风险。
#### Q3.3.25: 识别模型训练时loss能正常下降但acc一直为0
**A**: 识别模型训练初期acc为0是正常的多训一段时间指标就上来了。
**A**识别模型训练初期acc为0是正常的多训一段时间指标就上来了。
#### Q3.3.26: PaddleOCR在训练的时候一直使用cosine_decay的学习率下降策略这是为什么呢
**A**: cosine_decay表示在训练的过程中学习率按照cosine的变化趋势逐渐下降至0在迭代轮数更长的情况下比常量的学习率变化策略会有更好的收敛效果因此在实际训练的时候均采用了cosine_decay来获得精度更高的模型。
**A**cosine_decay表示在训练的过程中学习率按照cosine的变化趋势逐渐下降至0在迭代轮数更长的情况下比常量的学习率变化策略会有更好的收敛效果因此在实际训练的时候均采用了cosine_decay来获得精度更高的模型。
<a name="预测部署3"></a>
@ -808,7 +831,7 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
### Q3.4.26: 目前paddle hub serving 只支持 imgpath如果我想用imgurl 去哪里改呢?
**A**: 图片是在这里读取的https://github.com/PaddlePaddle/PaddleOCR/blob/67ef25d593c4eabfaaceb22daade4577f53bed81/deploy/hubserving/ocr_system/module.py#L55
**A**图片是在这里读取的https://github.com/PaddlePaddle/PaddleOCR/blob/67ef25d593c4eabfaaceb22daade4577f53bed81/deploy/hubserving/ocr_system/module.py#L55
可以参考下面的写法将url path转化为np arrayhttps://cloud.tencent.com/developer/article/1467840
```
response = request.urlopen('http://i1.whymtj.com/uploads/tu/201902/9999/52491ae4ba.jpg')
@ -818,5 +841,5 @@ img = cv.imdecode(img_array, -1)
### Q3.4.27: C++ 端侧部署可以只对OCR的检测部署吗
**A** 可以的识别和检测模块是解耦的。如果想对检测部署需要自己修改一下main函数
**A**可以的识别和检测模块是解耦的。如果想对检测部署需要自己修改一下main函数
只保留检测相关就可以:https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/deploy/cpp_infer/src/main.cpp#L72

View File

@ -21,13 +21,13 @@ PaddleOCR开源的文本检测算法列表
|EAST|MobileNetV3|78.24%|79.15%|78.69%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.83%|81.80%|86.52%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
在Total-text文本检测公开数据集上算法效果如下
|模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.05%|76.80%|82.47%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载[百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)

View File

@ -23,13 +23,13 @@ On the ICDAR2015 dataset, the text detection result is as follows:
|EAST|MobileNetV3|78.24%|79.15%|78.69%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.83%|81.80%|86.52%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
On Total-Text dataset, the text detection result is as follows:
|Model|Backbone|precision|recall|Hmean|Download link|
| --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.05%|76.80%|82.47%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
**Note** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from [Baidu Drive](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (download code: 2bpi).

View File

@ -66,8 +66,10 @@ def build_dataloader(config, mode, device, logger):
batch_size = loader_config['batch_size_per_card']
drop_last = loader_config['drop_last']
num_workers = loader_config['num_workers']
use_shared_memory = False
if 'use_shared_memory' in loader_config.keys():
use_shared_memory = loader_config['use_shared_memory']
else:
use_shared_memory = True
if mode == "Train":
#Distribute data to multiple cards
batch_sampler = DistributedBatchSampler(
@ -75,7 +77,6 @@ def build_dataloader(config, mode, device, logger):
batch_size=batch_size,
shuffle=False,
drop_last=drop_last)
use_shared_memory = True
else:
#Distribute data to single card
batch_sampler = BatchSampler(