Merge pull request #810 from yukavio/develop
update bash of slim pruning
This commit is contained in:
commit
c320457d73
|
@ -51,14 +51,14 @@ python setup.py install
|
||||||
|
|
||||||
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
|
进入PaddleOCR根目录,通过以下命令对模型进行敏感度分析训练:
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights="your trained model" Global.test_batch_size_per_card=1
|
python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db_v1.1.yml -o Global.pretrain_weights="your trained model" Global.test_batch_size_per_card=1
|
||||||
```
|
```
|
||||||
|
|
||||||
### 4. 模型裁剪训练
|
### 4. 模型裁剪训练
|
||||||
裁剪时通过之前的敏感度分析文件决定每个网络层的裁剪比例。在具体实现时,为了尽可能多的保留从图像中提取的低阶特征,我们跳过了backbone中靠近输入的4个卷积层。同样,为了减少由于裁剪导致的模型性能损失,我们通过之前敏感度分析所获得的敏感度表,人工挑选出了一些冗余较少,对裁剪较为敏感的[网络层](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/pruning_and_finetune.py#L41)(指在较低的裁剪比例下就导致很高性能损失的网络层),并在之后的裁剪过程中选择避开这些网络层。裁剪过后finetune的过程沿用OCR检测模型原始的训练策略。
|
裁剪时通过之前的敏感度分析文件决定每个网络层的裁剪比例。在具体实现时,为了尽可能多的保留从图像中提取的低阶特征,我们跳过了backbone中靠近输入的4个卷积层。同样,为了减少由于裁剪导致的模型性能损失,我们通过之前敏感度分析所获得的敏感度表,人工挑选出了一些冗余较少,对裁剪较为敏感的[网络层](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/deploy/slim/prune/pruning_and_finetune.py#L41)(指在较低的裁剪比例下就导致很高性能损失的网络层),并在之后的裁剪过程中选择避开这些网络层。裁剪过后finetune的过程沿用OCR检测模型原始的训练策略。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
|
python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db_v1.1.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
|
||||||
```
|
```
|
||||||
通过对比可以发现,经过裁剪训练保存的模型更小。
|
通过对比可以发现,经过裁剪训练保存的模型更小。
|
||||||
|
|
||||||
|
@ -66,7 +66,7 @@ python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db.yml -
|
||||||
|
|
||||||
在得到裁剪训练保存的模型后,我们可以将其导出为inference_model:
|
在得到裁剪训练保存的模型后,我们可以将其导出为inference_model:
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
|
python deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db_v1.1.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
|
||||||
```
|
```
|
||||||
|
|
||||||
inference model的预测和部署参考:
|
inference model的预测和部署参考:
|
||||||
|
|
|
@ -55,7 +55,7 @@ Enter the PaddleOCR root directory,perform sensitivity analysis on the model w
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
|
||||||
python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
|
python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db_v1.1.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -67,7 +67,7 @@ python deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Gl
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
|
|
||||||
python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
|
python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db_v1.1.yml -o Global.pretrain_weights=./deploy/slim/prune/pretrain_models/det_mv3_db/best_accuracy Global.test_batch_size_per_card=1
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -76,7 +76,7 @@ python deploy/slim/prune/pruning_and_finetune.py -c configs/det/det_mv3_db.yml -
|
||||||
|
|
||||||
We can export the pruned model as inference_model for deployment:
|
We can export the pruned model as inference_model for deployment:
|
||||||
```bash
|
```bash
|
||||||
python deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
|
python deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db_v1.1.yml -o Global.pretrain_weights=./output/det_db/best_accuracy Global.test_batch_size_per_card=1 Global.save_inference_dir=inference_model
|
||||||
```
|
```
|
||||||
|
|
||||||
Reference for prediction and deployment of inference model:
|
Reference for prediction and deployment of inference model:
|
||||||
|
|
|
@ -92,7 +92,8 @@ def main():
|
||||||
|
|
||||||
sen = load_sensitivities("sensitivities_0.data")
|
sen = load_sensitivities("sensitivities_0.data")
|
||||||
for i in skip_list:
|
for i in skip_list:
|
||||||
sen.pop(i)
|
if i in sen.keys():
|
||||||
|
sen.pop(i)
|
||||||
back_bone_list = ['conv' + str(x) for x in range(1, 5)]
|
back_bone_list = ['conv' + str(x) for x in range(1, 5)]
|
||||||
for i in back_bone_list:
|
for i in back_bone_list:
|
||||||
for key in list(sen.keys()):
|
for key in list(sen.keys()):
|
||||||
|
|
Loading…
Reference in New Issue