delete load_static_weights for detection (#2725)
* delete load_static_weights for detection * master to develop for PaddleClas referencee
This commit is contained in:
parent
81aba737d3
commit
c64e235a1f
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1200
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [3000, 2000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1200
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [3000, 2000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet18_vd_pretrained
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1200
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0, 2000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1000
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1200
|
||||
# evaluation is run every 2000 iterations
|
||||
eval_batch_step: [0,2000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1000
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_pretrained/
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1000
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 1000
|
||||
# evaluation is run every 5000 iterations after the 4000th iteration
|
||||
eval_batch_step: [4000, 5000]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: True
|
||||
cal_metric_during_train: False
|
||||
pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/
|
||||
checkpoints:
|
||||
|
|
|
@ -7,11 +7,6 @@ Global:
|
|||
save_epoch_step: 10
|
||||
# evaluation is run every 0 iterationss after the 1000th iteration
|
||||
eval_batch_step: [ 0, 1000 ]
|
||||
# 1. If pretrained_model is saved in static mode, such as classification pretrained model
|
||||
# from static branch, load_static_weights must be set as True.
|
||||
# 2. If you want to finetune the pretrained models we provide in the docs,
|
||||
# you should set load_static_weights as False.
|
||||
load_static_weights: False
|
||||
cal_metric_during_train: False
|
||||
pretrained_model:
|
||||
checkpoints:
|
||||
|
|
|
@ -45,26 +45,17 @@ json.dumps编码前的图像标注信息是包含多个字典的list,字典中
|
|||
## 快速启动训练
|
||||
|
||||
首先下载模型backbone的pretrain model,PaddleOCR的检测模型目前支持两种backbone,分别是MobileNetV3、ResNet_vd系列,
|
||||
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures)中的模型更换backbone。
|
||||
您可以根据需求使用[PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/develop/ppcls/modeling/architectures)中的模型更换backbone,
|
||||
对应的backbone预训练模型可以从[PaddleClas repo 主页中找到下载链接](https://github.com/PaddlePaddle/PaddleClas#mobile-series)。
|
||||
```shell
|
||||
cd PaddleOCR/
|
||||
# 根据backbone的不同选择下载对应的预训练模型
|
||||
# 下载MobileNetV3的预训练模型
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
||||
# 或,下载ResNet18_vd的预训练模型
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
|
||||
# 或,下载ResNet50_vd的预训练模型
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
|
||||
|
||||
# 解压预训练模型文件,以MobileNetV3为例
|
||||
tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models/
|
||||
|
||||
# 注:正确解压backbone预训练权重文件后,文件夹下包含众多以网络层命名的权重文件,格式如下:
|
||||
./pretrain_models/MobileNetV3_large_x0_5_pretrained/
|
||||
└─ conv_last_bn_mean
|
||||
└─ conv_last_bn_offset
|
||||
└─ conv_last_bn_scale
|
||||
└─ conv_last_bn_variance
|
||||
└─ ......
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
|
||||
|
||||
```
|
||||
|
||||
|
@ -120,16 +111,16 @@ python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{pat
|
|||
|
||||
测试单张图像的检测效果
|
||||
```shell
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
|
||||
```
|
||||
|
||||
测试DB模型时,调整后处理阈值,
|
||||
```shell
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
|
||||
```
|
||||
|
||||
|
||||
测试文件夹下所有图像的检测效果
|
||||
```shell
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
|
||||
```
|
||||
|
|
|
@ -49,10 +49,9 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobi
|
|||
# -c 后面设置训练算法的yml配置文件
|
||||
# -o 配置可选参数
|
||||
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
|
||||
# Global.load_static_weights 参数需要设置为 False。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
|
||||
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_inference_dir=./inference/det_db/
|
||||
```
|
||||
转inference模型时,使用的配置文件和训练时使用的配置文件相同。另外,还需要设置配置文件中的`Global.pretrained_model`参数,其指向训练中保存的模型参数文件。
|
||||
转换成功后,在模型保存目录下有三个文件:
|
||||
|
@ -76,10 +75,9 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobi
|
|||
# -c 后面设置训练算法的yml配置文件
|
||||
# -o 配置可选参数
|
||||
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
|
||||
# Global.load_static_weights 参数需要设置为 False。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
|
||||
```
|
||||
|
||||
**注意:**如果您是在自己的数据集上训练的模型,并且调整了中文字符的字典文件,请注意修改配置文件中的`character_dict_path`是否是所需要的字典文件。
|
||||
|
@ -105,10 +103,9 @@ wget -P ./ch_lite/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobi
|
|||
# -c 后面设置训练算法的yml配置文件
|
||||
# -o 配置可选参数
|
||||
# Global.pretrained_model 参数设置待转换的训练模型地址,不用添加文件后缀 .pdmodel,.pdopt或.pdparams。
|
||||
# Global.load_static_weights 参数需要设置为 False。
|
||||
# Global.save_inference_dir参数设置转换的模型将保存的地址。
|
||||
|
||||
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
|
||||
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.save_inference_dir=./inference/cls/
|
||||
```
|
||||
|
||||
转换成功后,在目录下有三个文件:
|
||||
|
@ -164,7 +161,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/2.jpg" --det_model_di
|
|||
首先将DB文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
||||
```
|
||||
|
||||
DB文本检测模型推理,可以执行如下命令:
|
||||
|
@ -185,7 +182,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs_en/img_10.jpg" --det_
|
|||
首先将EAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_east
|
||||
```
|
||||
|
||||
**EAST文本检测模型推理,需要设置参数`--det_algorithm="EAST"`**,可以执行如下命令:
|
||||
|
@ -205,7 +202,7 @@ python3 tools/infer/predict_det.py --det_algorithm="EAST" --image_dir="./doc/img
|
|||
#### (1). 四边形文本检测模型(ICDAR2015)
|
||||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在ICDAR2015英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)),可以使用如下命令进行转换:
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_ic15
|
||||
|
||||
```
|
||||
**SAST文本检测模型推理,需要设置参数`--det_algorithm="SAST"`**,可以执行如下命令:
|
||||
|
@ -220,7 +217,7 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
|
|||
首先将SAST文本检测训练过程中保存的模型,转换成inference model。以基于Resnet50_vd骨干网络,在Total-Text英文数据集训练的模型为例([模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_tt
|
||||
|
||||
```
|
||||
|
||||
|
@ -270,7 +267,7 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
|
|||
的模型为例( [模型下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) ),可以使用如下命令进行转换:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
|
||||
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn
|
||||
```
|
||||
|
||||
CRNN 文本识别模型推理,可以执行如下命令:
|
||||
|
|
|
@ -38,28 +38,17 @@ If you want to train PaddleOCR on other datasets, please build the annotation fi
|
|||
|
||||
## TRAINING
|
||||
|
||||
First download the pretrained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/master/ppcls/modeling/architectures) to replace backbone according to your needs.
|
||||
First download the pretrained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/develop/ppcls/modeling/architectures) to replace backbone according to your needs.
|
||||
And the responding download link of backbone pretrain weights can be found in [PaddleClas repo](https://github.com/PaddlePaddle/PaddleClas#mobile-series).
|
||||
```shell
|
||||
cd PaddleOCR/
|
||||
# Download the pre-trained model of MobileNetV3
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x0_5_pretrained.tar
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
||||
# or, download the pre-trained model of ResNet18_vd
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet18_vd_pretrained.tar
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
|
||||
# or, download the pre-trained model of ResNet50_vd
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
|
||||
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
|
||||
|
||||
# decompressing the pre-training model file, take MobileNetV3 as an example
|
||||
tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_models/
|
||||
|
||||
# Note: After decompressing the backbone pre-training weight file correctly, the file list in the folder is as follows:
|
||||
./pretrain_models/MobileNetV3_large_x0_5_pretrained/
|
||||
└─ conv_last_bn_mean
|
||||
└─ conv_last_bn_offset
|
||||
└─ conv_last_bn_scale
|
||||
└─ conv_last_bn_variance
|
||||
└─ ......
|
||||
|
||||
```
|
||||
|
||||
#### START TRAINING
|
||||
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
|
||||
|
@ -113,16 +102,16 @@ python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{pat
|
|||
|
||||
Test the detection result on a single image:
|
||||
```shell
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
|
||||
```
|
||||
|
||||
When testing the DB model, adjust the post-processing threshold:
|
||||
```shell
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
|
||||
```
|
||||
|
||||
|
||||
Test the detection result on all images in the folder:
|
||||
```shell
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
|
||||
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
|
||||
```
|
||||
|
|
|
@ -52,10 +52,9 @@ The above model is a DB algorithm trained with MobileNetV3 as the backbone. To c
|
|||
# -c Set the training algorithm yml configuration file
|
||||
# -o Set optional parameters
|
||||
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
||||
# Global.load_static_weights needs to be set to False
|
||||
# Global.save_inference_dir Set the address where the converted model will be saved.
|
||||
|
||||
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db/
|
||||
python3 tools/export_model.py -c configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_det_train/best_accuracy Global.save_inference_dir=./inference/det_db/
|
||||
```
|
||||
|
||||
When converting to an inference model, the configuration file used is the same as the configuration file used during training. In addition, you also need to set the `Global.pretrained_model` parameter in the configuration file.
|
||||
|
@ -80,10 +79,9 @@ The recognition model is converted to the inference model in the same way as the
|
|||
# -c Set the training algorithm yml configuration file
|
||||
# -o Set optional parameters
|
||||
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
||||
# Global.load_static_weights needs to be set to False
|
||||
# Global.save_inference_dir Set the address where the converted model will be saved.
|
||||
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn/
|
||||
python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn/
|
||||
```
|
||||
|
||||
If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.
|
||||
|
@ -109,10 +107,9 @@ The angle classification model is converted to the inference model in the same w
|
|||
# -c Set the training algorithm yml configuration file
|
||||
# -o Set optional parameters
|
||||
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
|
||||
# Global.load_static_weights needs to be set to False
|
||||
# Global.save_inference_dir Set the address where the converted model will be saved.
|
||||
|
||||
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/cls/
|
||||
python3 tools/export_model.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_cls_train/best_accuracy Global.save_inference_dir=./inference/cls/
|
||||
```
|
||||
|
||||
After the conversion is successful, there are two files in the directory:
|
||||
|
@ -171,7 +168,7 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/22.jpg" --det_model_d
|
|||
First, convert the model saved in the DB text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_db
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=./det_r50_vd_db_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_db
|
||||
```
|
||||
|
||||
DB text detection model inference, you can execute the following command:
|
||||
|
@ -192,7 +189,7 @@ The visualized text detection results are saved to the `./inference_results` fol
|
|||
First, convert the model saved in the EAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_east
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_east.yml -o Global.pretrained_model=./det_r50_vd_east_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_east
|
||||
```
|
||||
**For EAST text detection model inference, you need to set the parameter ``--det_algorithm="EAST"``**, run the following command:
|
||||
|
||||
|
@ -213,7 +210,7 @@ The visualized text detection results are saved to the `./inference_results` fol
|
|||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the ICDAR2015 English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_ic15
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_icdar15.yml -o Global.pretrained_model=./det_r50_vd_sast_icdar15_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_ic15
|
||||
```
|
||||
|
||||
**For SAST quadrangle text detection model inference, you need to set the parameter `--det_algorithm="SAST"`**, run the following command:
|
||||
|
@ -230,7 +227,7 @@ The visualized text detection results are saved to the `./inference_results` fol
|
|||
First, convert the model saved in the SAST text detection training process into an inference model. Taking the model based on the Resnet50_vd backbone network and trained on the Total-Text English dataset as an example ([model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)), you can use the following command to convert:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/det_sast_tt
|
||||
python3 tools/export_model.py -c configs/det/det_r50_vd_sast_totaltext.yml -o Global.pretrained_model=./det_r50_vd_sast_totaltext_v2.0_train/best_accuracy Global.save_inference_dir=./inference/det_sast_tt
|
||||
```
|
||||
|
||||
**For SAST curved text detection model inference, you need to set the parameter `--det_algorithm="SAST"` and `--det_sast_polygon=True`**, run the following command:
|
||||
|
@ -279,7 +276,7 @@ Taking CRNN as an example, we introduce the recognition model inference based on
|
|||
First, convert the model saved in the CRNN text recognition training process into an inference model. Taking the model based on Resnet34_vd backbone network, using MJSynth and SynthText (two English text recognition synthetic datasets) for training, as an example ([model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)). It can be converted as follow:
|
||||
|
||||
```
|
||||
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
|
||||
python3 tools/export_model.py -c configs/det/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.save_inference_dir=./inference/rec_crnn
|
||||
```
|
||||
|
||||
For CRNN text recognition model inference, execute the following commands:
|
||||
|
|
Loading…
Reference in New Issue