fix rec bug and delete infer/predict_eval.py
This commit is contained in:
parent
c15d3bb09a
commit
c65f330890
|
@ -1,92 +0,0 @@
|
||||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import utility
|
|
||||||
from ppocr.utils.utility import initial_logger
|
|
||||||
logger = initial_logger()
|
|
||||||
import cv2
|
|
||||||
import predict_system
|
|
||||||
import copy
|
|
||||||
import numpy as np
|
|
||||||
import math
|
|
||||||
import time
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
from PIL import Image, ImageDraw, ImageFont
|
|
||||||
from tools.infer.utility import draw_ocr
|
|
||||||
from ppocr.utils.utility import get_image_file_list
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
args = utility.parse_args()
|
|
||||||
text_sys = predict_system.TextSystem(args)
|
|
||||||
|
|
||||||
if not os.path.exists(args.image_dir):
|
|
||||||
raise Exception("{} not exists !!".format(args.image_dir))
|
|
||||||
image_file_list = get_image_file_list(args.image_dir)
|
|
||||||
|
|
||||||
total_time_all = 0
|
|
||||||
count = 0
|
|
||||||
save_path = "./inference_output/predict.txt"
|
|
||||||
if not os.path.exists(os.path.dirname(save_path)):
|
|
||||||
os.makedirs(os.path.dirname(save_path))
|
|
||||||
fout = open(save_path, "wb")
|
|
||||||
for image_name in image_file_list:
|
|
||||||
image_file = image_name
|
|
||||||
img = cv2.imread(image_file)
|
|
||||||
if img is None:
|
|
||||||
logger.info("error in loading image:{}".format(image_file))
|
|
||||||
continue
|
|
||||||
count += 1
|
|
||||||
total_time = 0
|
|
||||||
starttime = time.time()
|
|
||||||
dt_boxes, rec_res = text_sys(img)
|
|
||||||
elapse = time.time() - starttime
|
|
||||||
total_time_all += elapse
|
|
||||||
print("Predict time of %s(%d): %.3fs" % (image_file, count, elapse))
|
|
||||||
dt_num = len(dt_boxes)
|
|
||||||
bbox_list = []
|
|
||||||
for dno in range(dt_num):
|
|
||||||
box = dt_boxes[dno]
|
|
||||||
text, score = rec_res[dno]
|
|
||||||
points = []
|
|
||||||
for tno in range(len(box)):
|
|
||||||
points.append([box[tno][0] * 1.0, box[tno][1] * 1.0])
|
|
||||||
bbox_list.append({
|
|
||||||
"transcription": text,
|
|
||||||
"points": points,
|
|
||||||
"scores": score * 1.0
|
|
||||||
})
|
|
||||||
# draw predict box and text in image
|
|
||||||
# and save drawed image in save_path
|
|
||||||
image = Image.open(image_file)
|
|
||||||
boxes, txts, scores = [], [], []
|
|
||||||
for dic in bbox_list:
|
|
||||||
boxes.append(dic['points'])
|
|
||||||
txts.append(dic['transcription'])
|
|
||||||
scores.append(round(dic['scores'], 3))
|
|
||||||
new_img = draw_ocr(image, boxes, txts, scores, draw_txt=True)
|
|
||||||
draw_img_save = os.path.join(
|
|
||||||
os.path.dirname(save_path), "inference_draw",
|
|
||||||
os.path.basename(image_file))
|
|
||||||
if not os.path.exists(os.path.dirname(draw_img_save)):
|
|
||||||
os.makedirs(os.path.dirname(draw_img_save))
|
|
||||||
cv2.imwrite(draw_img_save, new_img[:, :, ::-1])
|
|
||||||
print("drawed img saved in {}".format(draw_img_save))
|
|
||||||
# save predicted results in txt file
|
|
||||||
otstr = image_name + "\t" + json.dumps(bbox_list) + "\n"
|
|
||||||
fout.write(otstr.encode('utf-8'))
|
|
||||||
avg_time = total_time_all / count
|
|
||||||
logger.info("avg_time: {0}".format(avg_time))
|
|
||||||
logger.info("avg_fps: {0}".format(1.0 / avg_time))
|
|
||||||
fout.close()
|
|
|
@ -1,72 +0,0 @@
|
||||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import utility
|
|
||||||
from ppocr.utils.utility import initial_logger
|
|
||||||
logger = initial_logger()
|
|
||||||
import cv2
|
|
||||||
import predict_system
|
|
||||||
import copy
|
|
||||||
import numpy as np
|
|
||||||
import math
|
|
||||||
import time
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
args = utility.parse_args()
|
|
||||||
text_sys = predict_system.TextSystem(args)
|
|
||||||
|
|
||||||
image_file_list = []
|
|
||||||
img_set_path = "/paddle/code/dyn/test_imgs/rctw_samples/"
|
|
||||||
image_file_list = os.listdir(img_set_path)
|
|
||||||
|
|
||||||
total_time_all = 0
|
|
||||||
count = 0
|
|
||||||
save_path = "./output/predict.txt"
|
|
||||||
fout = open(save_path, "wb")
|
|
||||||
for image_name in image_file_list:
|
|
||||||
image_file = img_set_path + image_name
|
|
||||||
img = cv2.imread(image_file)
|
|
||||||
if img is None:
|
|
||||||
logger.info("error in loading image:{}".format(image_file))
|
|
||||||
continue
|
|
||||||
count += 1
|
|
||||||
starttime = time.time()
|
|
||||||
dt_boxes, rec_res = text_sys(img)
|
|
||||||
if dt_boxes is None:
|
|
||||||
count -= 1
|
|
||||||
continue
|
|
||||||
elapse = time.time() - starttime
|
|
||||||
total_time_all += elapse
|
|
||||||
print("Predict time of %s(%d): %.3fs" % (image_file, count, elapse))
|
|
||||||
dt_num = len(dt_boxes)
|
|
||||||
bbox_list = []
|
|
||||||
for dno in range(dt_num):
|
|
||||||
box = dt_boxes[dno]
|
|
||||||
text, score = rec_res[dno]
|
|
||||||
points = []
|
|
||||||
for tno in range(len(box)):
|
|
||||||
points.append([box[tno][0] * 1.0, box[tno][1] * 1.0])
|
|
||||||
bbox_list.append({
|
|
||||||
"transcription": text,
|
|
||||||
"points": points,
|
|
||||||
"scores": score * 1.0
|
|
||||||
})
|
|
||||||
otstr = image_name + "\t" + json.dumps(bbox_list) + "\n"
|
|
||||||
fout.write(otstr.encode('utf-8'))
|
|
||||||
avg_time = total_time_all / count
|
|
||||||
logger.info("avg_time: {0}".format(avg_time))
|
|
||||||
logger.info("avg_fps: {0}".format(1.0 / avg_time))
|
|
||||||
fout.close()
|
|
|
@ -36,8 +36,9 @@ class TextRecognizer(object):
|
||||||
char_ops_params['loss_type'] = 'ctc'
|
char_ops_params['loss_type'] = 'ctc'
|
||||||
self.char_ops = CharacterOps(char_ops_params)
|
self.char_ops = CharacterOps(char_ops_params)
|
||||||
|
|
||||||
def resize_norm_img(self, img):
|
def resize_norm_img(self, img, max_wh_ratio):
|
||||||
imgC, imgH, imgW = self.rec_image_shape
|
imgC, imgH, imgW = self.rec_image_shape
|
||||||
|
imgW = int(32 * max_wh_ratio)
|
||||||
h = img.shape[0]
|
h = img.shape[0]
|
||||||
w = img.shape[1]
|
w = img.shape[1]
|
||||||
ratio = w / float(h)
|
ratio = w / float(h)
|
||||||
|
@ -56,14 +57,19 @@ class TextRecognizer(object):
|
||||||
|
|
||||||
def __call__(self, img_list):
|
def __call__(self, img_list):
|
||||||
img_num = len(img_list)
|
img_num = len(img_list)
|
||||||
batch_num = 15
|
batch_num = 30
|
||||||
rec_res = []
|
rec_res = []
|
||||||
predict_time = 0
|
predict_time = 0
|
||||||
for beg_img_no in range(0, img_num, batch_num):
|
for beg_img_no in range(0, img_num, batch_num):
|
||||||
end_img_no = min(img_num, beg_img_no + batch_num)
|
end_img_no = min(img_num, beg_img_no + batch_num)
|
||||||
norm_img_batch = []
|
norm_img_batch = []
|
||||||
|
max_wh_ratio = 0
|
||||||
for ino in range(beg_img_no, end_img_no):
|
for ino in range(beg_img_no, end_img_no):
|
||||||
norm_img = self.resize_norm_img(img_list[ino])
|
h, w = img_list[ino].shape[0:2]
|
||||||
|
wh_ratio = w * 1.0 / h
|
||||||
|
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
||||||
|
for ino in range(beg_img_no, end_img_no):
|
||||||
|
norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
|
||||||
norm_img = norm_img[np.newaxis, :]
|
norm_img = norm_img[np.newaxis, :]
|
||||||
norm_img_batch.append(norm_img)
|
norm_img_batch.append(norm_img)
|
||||||
norm_img_batch = np.concatenate(norm_img_batch)
|
norm_img_batch = np.concatenate(norm_img_batch)
|
||||||
|
|
Loading…
Reference in New Issue