parent
882ad39580
commit
c708041e13
|
@ -26,34 +26,27 @@ import time
|
|||
import paddle.fluid as fluid
|
||||
|
||||
import tools.infer.utility as utility
|
||||
from ppocr.utils.utility import initial_logger
|
||||
logger = initial_logger()
|
||||
from ppocr.postprocess import build_post_process
|
||||
from ppocr.utils.logging import get_logger
|
||||
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
|
||||
from ppocr.utils.character import CharacterOps
|
||||
|
||||
|
||||
class TextRecognizer(object):
|
||||
def __init__(self, args):
|
||||
self.predictor, self.input_tensor, self.output_tensors =\
|
||||
utility.create_predictor(args, mode="rec")
|
||||
self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")]
|
||||
self.character_type = args.rec_char_type
|
||||
self.rec_batch_num = args.rec_batch_num
|
||||
self.rec_algorithm = args.rec_algorithm
|
||||
self.use_zero_copy_run = args.use_zero_copy_run
|
||||
char_ops_params = {
|
||||
postprocess_params = {
|
||||
'name': 'CTCLabelDecode',
|
||||
"character_type": args.rec_char_type,
|
||||
"character_dict_path": args.rec_char_dict_path,
|
||||
"use_space_char": args.use_space_char,
|
||||
"max_text_length": args.max_text_length
|
||||
"use_space_char": args.use_space_char
|
||||
}
|
||||
if self.rec_algorithm != "RARE":
|
||||
char_ops_params['loss_type'] = 'ctc'
|
||||
self.loss_type = 'ctc'
|
||||
else:
|
||||
char_ops_params['loss_type'] = 'attention'
|
||||
self.loss_type = 'attention'
|
||||
self.char_ops = CharacterOps(char_ops_params)
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor, self.output_tensors = \
|
||||
utility.create_predictor(args, 'rec', logger)
|
||||
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
imgC, imgH, imgW = self.rec_image_shape
|
||||
|
@ -112,48 +105,14 @@ class TextRecognizer(object):
|
|||
else:
|
||||
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
|
||||
self.predictor.run([norm_img_batch])
|
||||
|
||||
if self.loss_type == "ctc":
|
||||
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
||||
rec_idx_lod = self.output_tensors[0].lod()[0]
|
||||
predict_batch = self.output_tensors[1].copy_to_cpu()
|
||||
predict_lod = self.output_tensors[1].lod()[0]
|
||||
outputs = []
|
||||
for output_tensor in self.output_tensors:
|
||||
output = output_tensor.copy_to_cpu()
|
||||
outputs.append(output)
|
||||
preds = outputs[0]
|
||||
rec_res = self.postprocess_op(preds)
|
||||
elapse = time.time() - starttime
|
||||
predict_time += elapse
|
||||
for rno in range(len(rec_idx_lod) - 1):
|
||||
beg = rec_idx_lod[rno]
|
||||
end = rec_idx_lod[rno + 1]
|
||||
rec_idx_tmp = rec_idx_batch[beg:end, 0]
|
||||
preds_text = self.char_ops.decode(rec_idx_tmp)
|
||||
beg = predict_lod[rno]
|
||||
end = predict_lod[rno + 1]
|
||||
probs = predict_batch[beg:end, :]
|
||||
ind = np.argmax(probs, axis=1)
|
||||
blank = probs.shape[1]
|
||||
valid_ind = np.where(ind != (blank - 1))[0]
|
||||
if len(valid_ind) == 0:
|
||||
continue
|
||||
score = np.mean(probs[valid_ind, ind[valid_ind]])
|
||||
# rec_res.append([preds_text, score])
|
||||
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
||||
else:
|
||||
rec_idx_batch = self.output_tensors[0].copy_to_cpu()
|
||||
predict_batch = self.output_tensors[1].copy_to_cpu()
|
||||
elapse = time.time() - starttime
|
||||
predict_time += elapse
|
||||
for rno in range(len(rec_idx_batch)):
|
||||
end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
|
||||
if len(end_pos) <= 1:
|
||||
preds = rec_idx_batch[rno, 1:]
|
||||
score = np.mean(predict_batch[rno, 1:])
|
||||
else:
|
||||
preds = rec_idx_batch[rno, 1:end_pos[1]]
|
||||
score = np.mean(predict_batch[rno, 1:end_pos[1]])
|
||||
preds_text = self.char_ops.decode(preds)
|
||||
# rec_res.append([preds_text, score])
|
||||
rec_res[indices[beg_img_no + rno]] = [preds_text, score]
|
||||
|
||||
return rec_res, predict_time
|
||||
return rec_res, elapse
|
||||
|
||||
|
||||
def main(args):
|
||||
|
@ -183,9 +142,10 @@ def main(args):
|
|||
exit()
|
||||
for ino in range(len(img_list)):
|
||||
print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
|
||||
print("Total predict time for %d images:%.3f" %
|
||||
print("Total predict time for %d images, cost: %.3f" %
|
||||
(len(img_list), predict_time))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger = get_logger()
|
||||
main(utility.parse_args())
|
||||
|
|
|
@ -323,6 +323,20 @@ def eval(model, valid_dataloader, post_process_class, eval_class):
|
|||
return metirc
|
||||
|
||||
|
||||
def save_inference_mode(model, config, logger):
|
||||
model.eval()
|
||||
save_path = '{}/infer/{}'.format(config['Global']['save_model_dir'],
|
||||
config['Architecture']['model_type'])
|
||||
if config['Architecture']['model_type'] == 'rec':
|
||||
input_shape = [None, 3, 32, None]
|
||||
jit_model = paddle.jit.to_static(
|
||||
model, input_spec=[paddle.static.InputSpec(input_shape)])
|
||||
paddle.jit.save(jit_model, save_path)
|
||||
logger.info('inference model save to {}'.format(save_path))
|
||||
|
||||
model.train()
|
||||
|
||||
|
||||
def preprocess():
|
||||
FLAGS = ArgsParser().parse_args()
|
||||
config = load_config(FLAGS.config)
|
||||
|
@ -334,7 +348,7 @@ def preprocess():
|
|||
|
||||
alg = config['Architecture']['algorithm']
|
||||
assert alg in [
|
||||
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN'
|
||||
'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN', 'CLS'
|
||||
]
|
||||
|
||||
device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
|
||||
|
|
|
@ -89,6 +89,7 @@ def main(config, device, logger, vdl_writer):
|
|||
program.train(config, train_dataloader, valid_dataloader, device, model,
|
||||
loss_class, optimizer, lr_scheduler, post_process_class,
|
||||
eval_class, pre_best_model_dict, logger, vdl_writer)
|
||||
program.save_inference_mode(model, config, logger)
|
||||
|
||||
|
||||
def test_reader(config, device, logger):
|
||||
|
@ -102,8 +103,8 @@ def test_reader(config, device, logger):
|
|||
if count % 1 == 0:
|
||||
batch_time = time.time() - starttime
|
||||
starttime = time.time()
|
||||
logger.info("reader: {}, {}, {}".format(count,
|
||||
len(data), batch_time))
|
||||
logger.info("reader: {}, {}, {}".format(
|
||||
count, len(data[0]), batch_time))
|
||||
except Exception as e:
|
||||
logger.info(e)
|
||||
logger.info("finish reader: {}, Success!".format(count))
|
||||
|
|
Loading…
Reference in New Issue