Merge pull request #3963 from LDOUBLEV/update_doc_2.3
rm tests and update inference_ppocr doc
This commit is contained in:
commit
ca6f945a5e
|
@ -21,9 +21,10 @@
|
|||
|
||||
```
|
||||
# 下载超轻量中文检测模型:
|
||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
|
||||
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_ppocr_mobile_v2.0_det_infer/"
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
|
||||
tar xf ch_PP-OCRv2_det_infer.tar
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv2_det_infer.tar/"
|
||||
|
||||
```
|
||||
|
||||
可视化文本检测结果默认保存到`./inference_results`文件夹里面,结果文件的名称前缀为'det_res'。结果示例如下:
|
||||
|
@ -41,13 +42,13 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_m
|
|||
如果输入图片的分辨率比较大,而且想使用更大的分辨率预测,可以设置det_limit_side_len 为想要的值,比如1216:
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --det_limit_type=max --det_limit_side_len=1216
|
||||
```
|
||||
|
||||
如果想使用CPU进行预测,执行命令如下
|
||||
|
||||
```
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --use_gpu=False
|
||||
```
|
||||
|
||||
|
||||
|
@ -64,9 +65,9 @@ python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_di
|
|||
|
||||
```
|
||||
# 下载超轻量中文识别模型:
|
||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
|
||||
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
|
||||
tar xf ch_PP-OCRv2_rec_infer.tar
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./ch_PP-OCRv2_rec_infer/"
|
||||
```
|
||||
|
||||

|
||||
|
@ -81,10 +82,9 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
|
|||
|
||||
### 2.2 多语言模型的推理
|
||||
|
||||
如果您需要预测的是其他语言模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,
|
||||
需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
|
||||
|
||||
如果您需要预测的是其他语言模型,可以在[此链接](./models_list.md#%E5%A4%9A%E8%AF%AD%E8%A8%80%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)中找到对应语言的inference模型,在使用inference模型预测时,需要通过`--rec_char_dict_path`指定使用的字典路径, 同时为了得到正确的可视化结果,需要通过 `--vis_font_path` 指定可视化的字体路径,`doc/fonts/` 路径下有默认提供的小语种字体,例如韩文识别:
|
||||
```
|
||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
|
||||
```
|
||||
|
||||
|
@ -125,14 +125,13 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:['0', 0.9999982]
|
|||
|
||||
```shell
|
||||
# 使用方向分类器
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/ch_PP-OCRv2_rec_infer/" --use_angle_cls=true
|
||||
# 不使用方向分类器
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --rec_model_dir="./inference/ch_PP-OCRv2_rec_infer/" --use_angle_cls=false
|
||||
# 使用多进程
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --rec_model_dir="./inference/ch_PP-OCRv2_rec_infer/" --use_angle_cls=false --use_mp=True --total_process_num=6
|
||||
```
|
||||
|
||||
执行命令后,识别结果图像如下:
|
||||
|
||||

|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ This article introduces the use of the Python inference engine for the PP-OCR mo
|
|||
- [Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE)
|
||||
- [1. Lightweight Chinese Recognition Model Inference](#LIGHTWEIGHT_RECOGNITION)
|
||||
- [2. Multilingaul Model Inference](#MULTILINGUAL_MODEL_INFERENCE)
|
||||
|
||||
|
||||
- [Angle Classification Model Inference](#ANGLE_CLASS_MODEL_INFERENCE)
|
||||
|
||||
- [Text Detection Angle Classification and Recognition Inference Concatenation](#CONCATENATION)
|
||||
|
@ -22,10 +22,10 @@ The default configuration is based on the inference setting of the DB text detec
|
|||
|
||||
```
|
||||
# download DB text detection inference model
|
||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
|
||||
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
|
||||
# predict
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar
|
||||
tar xf ch_PP-OCRv2_det_infer.tar
|
||||
# run inference
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./ch_PP-OCRv2_det_infer.tar/"
|
||||
```
|
||||
|
||||
The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:
|
||||
|
@ -42,12 +42,12 @@ Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest si
|
|||
|
||||
If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
|
||||
```
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --det_limit_type=max --det_limit_side_len=1216
|
||||
```
|
||||
|
||||
If you want to use the CPU for prediction, execute the command as follows
|
||||
```
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
|
||||
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --use_gpu=False
|
||||
```
|
||||
|
||||
<a name="RECOGNITION_MODEL_INFERENCE"></a>
|
||||
|
@ -62,9 +62,10 @@ For lightweight Chinese recognition model inference, you can execute the followi
|
|||
|
||||
```
|
||||
# download CRNN text recognition inference model
|
||||
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
|
||||
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
|
||||
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar
|
||||
tar xf ch_PP-OCRv2_rec_infer.tar
|
||||
# run inference
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./ch_PP-OCRv2_rec_infer/"
|
||||
```
|
||||
|
||||

|
||||
|
@ -78,10 +79,12 @@ Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
|
|||
<a name="MULTILINGUAL_MODEL_INFERENCE"></a>
|
||||
|
||||
### 2. Multilingaul Model Inference
|
||||
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
|
||||
If you need to predict [other language models](./models_list_en.md#Multilingual), when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
|
||||
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:
|
||||
|
||||
```
|
||||
wget wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar
|
||||
|
||||
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
|
||||
```
|
||||

|
||||
|
@ -120,13 +123,13 @@ When performing prediction, you need to specify the path of a single image or a
|
|||
|
||||
```shell
|
||||
# use direction classifier
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/ch_PP-OCRv2_rec_infer/" --use_angle_cls=true
|
||||
|
||||
# not use use direction classifier
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --rec_model_dir="./inference/ch_PP-OCRv2_rec_infer/" --use_angle_cls=false
|
||||
|
||||
# use multi-process
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
|
||||
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/ch_PP-OCRv2_det_infer/" --rec_model_dir="./inference/ch_PP-OCRv2_rec_infer/" --use_angle_cls=false --use_mp=True --total_process_num=6
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -1,133 +0,0 @@
|
|||
import numpy as np
|
||||
import os
|
||||
import subprocess
|
||||
import json
|
||||
import argparse
|
||||
import glob
|
||||
|
||||
|
||||
def init_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
# params for testing assert allclose
|
||||
parser.add_argument("--atol", type=float, default=1e-3)
|
||||
parser.add_argument("--rtol", type=float, default=1e-3)
|
||||
parser.add_argument("--gt_file", type=str, default="")
|
||||
parser.add_argument("--log_file", type=str, default="")
|
||||
parser.add_argument("--precision", type=str, default="fp32")
|
||||
return parser
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = init_args()
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def run_shell_command(cmd):
|
||||
p = subprocess.Popen(
|
||||
cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
||||
out, err = p.communicate()
|
||||
|
||||
if p.returncode == 0:
|
||||
return out.decode('utf-8')
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def parser_results_from_log_by_name(log_path, names_list):
|
||||
if not os.path.exists(log_path):
|
||||
raise ValueError("The log file {} does not exists!".format(log_path))
|
||||
|
||||
if names_list is None or len(names_list) < 1:
|
||||
return []
|
||||
|
||||
parser_results = {}
|
||||
for name in names_list:
|
||||
cmd = "grep {} {}".format(name, log_path)
|
||||
outs = run_shell_command(cmd)
|
||||
outs = outs.split("\n")[0]
|
||||
result = outs.split("{}".format(name))[-1]
|
||||
result = json.loads(result)
|
||||
parser_results[name] = result
|
||||
return parser_results
|
||||
|
||||
|
||||
def load_gt_from_file(gt_file):
|
||||
if not os.path.exists(gt_file):
|
||||
raise ValueError("The log file {} does not exists!".format(gt_file))
|
||||
with open(gt_file, 'r') as f:
|
||||
data = f.readlines()
|
||||
f.close()
|
||||
parser_gt = {}
|
||||
for line in data:
|
||||
image_name, result = line.strip("\n").split("\t")
|
||||
result = json.loads(result)
|
||||
parser_gt[image_name] = result
|
||||
return parser_gt
|
||||
|
||||
|
||||
def load_gt_from_txts(gt_file):
|
||||
gt_list = glob.glob(gt_file)
|
||||
gt_collection = {}
|
||||
for gt_f in gt_list:
|
||||
gt_dict = load_gt_from_file(gt_f)
|
||||
basename = os.path.basename(gt_f)
|
||||
if "fp32" in basename:
|
||||
gt_collection["fp32"] = [gt_dict, gt_f]
|
||||
elif "fp16" in basename:
|
||||
gt_collection["fp16"] = [gt_dict, gt_f]
|
||||
elif "int8" in basename:
|
||||
gt_collection["int8"] = [gt_dict, gt_f]
|
||||
else:
|
||||
continue
|
||||
return gt_collection
|
||||
|
||||
|
||||
def collect_predict_from_logs(log_path, key_list):
|
||||
log_list = glob.glob(log_path)
|
||||
pred_collection = {}
|
||||
for log_f in log_list:
|
||||
pred_dict = parser_results_from_log_by_name(log_f, key_list)
|
||||
key = os.path.basename(log_f)
|
||||
pred_collection[key] = pred_dict
|
||||
|
||||
return pred_collection
|
||||
|
||||
|
||||
def testing_assert_allclose(dict_x, dict_y, atol=1e-7, rtol=1e-7):
|
||||
for k in dict_x:
|
||||
np.testing.assert_allclose(
|
||||
np.array(dict_x[k]), np.array(dict_y[k]), atol=atol, rtol=rtol)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Usage:
|
||||
# python3.7 tests/compare_results.py --gt_file=./tests/results/*.txt --log_file=./tests/output/infer_*.log
|
||||
|
||||
args = parse_args()
|
||||
|
||||
gt_collection = load_gt_from_txts(args.gt_file)
|
||||
key_list = gt_collection["fp32"][0].keys()
|
||||
|
||||
pred_collection = collect_predict_from_logs(args.log_file, key_list)
|
||||
for filename in pred_collection.keys():
|
||||
if "fp32" in filename:
|
||||
gt_dict, gt_filename = gt_collection["fp32"]
|
||||
elif "fp16" in filename:
|
||||
gt_dict, gt_filename = gt_collection["fp16"]
|
||||
elif "int8" in filename:
|
||||
gt_dict, gt_filename = gt_collection["int8"]
|
||||
else:
|
||||
continue
|
||||
pred_dict = pred_collection[filename]
|
||||
|
||||
try:
|
||||
testing_assert_allclose(
|
||||
gt_dict, pred_dict, atol=args.atol, rtol=args.rtol)
|
||||
print(
|
||||
"Assert allclose passed! The results of {} and {} are consistent!".
|
||||
format(filename, gt_filename))
|
||||
except Exception as E:
|
||||
print(E)
|
||||
raise ValueError(
|
||||
"The results of {} and the results of {} are inconsistent!".
|
||||
format(filename, gt_filename))
|
|
@ -1,67 +0,0 @@
|
|||
===========================train_params===========================
|
||||
model_name:ocr_det
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_infer=1|whole_train_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train
|
||||
norm_train:tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
|
||||
pact_train:deploy/slim/quantization/quant.py -c configs/det/det_mv3_db.yml -o
|
||||
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/det_mv3_db_v2.0_train/best_accuracy
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c configs/det/det_mv3_db.yml -o
|
||||
quant_export:deploy/slim/quantization/export_model.py -c configs/det/det_mv3_db.yml -o
|
||||
fpgm_export:deploy/slim/prune/export_prune_model.py -c configs/det/det_mv3_db.yml -o
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
infer_export:null
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16|int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--save_log_path:null
|
||||
--benchmark:True
|
||||
null:null
|
||||
===========================cpp_infer_params===========================
|
||||
use_opencv:True
|
||||
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
|
||||
infer_quant:False
|
||||
inference:./deploy/cpp_infer/build/ppocr det
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--save_log_path:null
|
||||
--benchmark:True
|
||||
|
|
@ -1,52 +0,0 @@
|
|||
===========================train_params===========================
|
||||
model_name:ocr_server_det
|
||||
python:python3.7
|
||||
gpu_list:0|0,1
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./train_data/icdar2015/text_localization/ch4_test_images/
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train
|
||||
norm_train:tools/train.py -c configs/det/det_r50_vd_db.yml -o Global.pretrained_model=""
|
||||
pact_train:null
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c configs/det/det_mv3_db.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c configs/det/det_r50_vd_db.yml -o
|
||||
quant_export:null
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:./inference/ch_ppocr_server_v2.0_det_infer/
|
||||
infer_export:null
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_det.py
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:False|True
|
||||
--precision:fp32|fp16|int8
|
||||
--det_model_dir:
|
||||
--image_dir:./inference/ch_det_data_50/all-sum-510/
|
||||
--save_log_path:null
|
||||
--benchmark:True
|
||||
null:null
|
||||
|
|
@ -1,51 +0,0 @@
|
|||
===========================train_params===========================
|
||||
model_name:ocr_rec
|
||||
python:python3.7
|
||||
gpu_list:0|2,3
|
||||
Global.use_gpu:True|True
|
||||
Global.auto_cast:null
|
||||
Global.epoch_num:lite_train_infer=2|whole_train_infer=300
|
||||
Global.save_model_dir:./output/
|
||||
Train.loader.batch_size_per_card:lite_train_infer=128|whole_train_infer=128
|
||||
Global.pretrained_model:null
|
||||
train_model_name:latest
|
||||
train_infer_img_dir:./train_data/ic15_data/train
|
||||
null:null
|
||||
##
|
||||
trainer:norm_train|pact_train
|
||||
norm_train:tools/train.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
pact_train:deploy/slim/quantization/quant.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
fpgm_train:null
|
||||
distill_train:null
|
||||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
null:null
|
||||
##
|
||||
===========================infer_params===========================
|
||||
Global.save_inference_dir:./output/
|
||||
Global.pretrained_model:
|
||||
norm_export:tools/export_model.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
quant_export:deploy/slim/quantization/export_model.py -c configs/rec/rec_icdar15_train.yml -o
|
||||
fpgm_export:null
|
||||
distill_export:null
|
||||
export1:null
|
||||
export2:null
|
||||
##
|
||||
infer_model:./inference/ch_ppocr_mobile_v2.0_rec_infer/
|
||||
infer_export:null
|
||||
infer_quant:False
|
||||
inference:tools/infer/predict_rec.py
|
||||
--use_gpu:True|False
|
||||
--enable_mkldnn:True|False
|
||||
--cpu_threads:1|6
|
||||
--rec_batch_num:1
|
||||
--use_tensorrt:True|False
|
||||
--precision:fp32|fp16|int8
|
||||
--rec_model_dir:
|
||||
--image_dir:./inference/rec_inference
|
||||
--save_log_path:./test/output/
|
||||
--benchmark:True
|
||||
null:null
|
152
tests/prepare.sh
152
tests/prepare.sh
|
@ -1,152 +0,0 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
|
||||
MODE=$2
|
||||
|
||||
dataline=$(cat ${FILENAME})
|
||||
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
function func_parser_key(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[0]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
IFS=$'\n'
|
||||
# The training params
|
||||
model_name=$(func_parser_value "${lines[1]}")
|
||||
|
||||
trainer_list=$(func_parser_value "${lines[14]}")
|
||||
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer']
|
||||
MODE=$2
|
||||
|
||||
if [ ${MODE} = "lite_train_infer" ];then
|
||||
# pretrain lite train data
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
||||
wget -nc -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
|
||||
cd ./pretrain_models/ && tar xf det_mv3_db_v2.0_train.tar && cd ../
|
||||
rm -rf ./train_data/icdar2015
|
||||
rm -rf ./train_data/ic15_data
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar # todo change to bcebos
|
||||
wget -nc -P ./deploy/slim/prune https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/sen.pickle
|
||||
|
||||
cd ./train_data/ && tar xf icdar2015_lite.tar && tar xf ic15_data.tar
|
||||
ln -s ./icdar2015_lite ./icdar2015
|
||||
cd ../
|
||||
elif [ ${MODE} = "whole_train_infer" ];then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
||||
rm -rf ./train_data/icdar2015
|
||||
rm -rf ./train_data/ic15_data
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015.tar
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
|
||||
cd ./train_data/ && tar xf icdar2015.tar && tar xf ic15_data.tar && cd ../
|
||||
elif [ ${MODE} = "whole_infer" ];then
|
||||
wget -nc -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
|
||||
rm -rf ./train_data/icdar2015
|
||||
rm -rf ./train_data/ic15_data
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_infer.tar
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
|
||||
cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
|
||||
ln -s ./icdar2015_infer ./icdar2015
|
||||
cd ../
|
||||
elif [ ${MODE} = "infer" ] || [ ${MODE} = "cpp_infer" ];then
|
||||
if [ ${model_name} = "ocr_det" ]; then
|
||||
eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
|
||||
rm -rf ./train_data/icdar2015
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
|
||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
elif [ ${model_name} = "ocr_server_det" ]; then
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ch_det_data_50.tar
|
||||
cd ./inference && tar xf ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_det_data_50.tar && cd ../
|
||||
else
|
||||
rm -rf ./train_data/ic15_data
|
||||
eval_model_name="ch_ppocr_mobile_v2.0_rec_infer"
|
||||
wget -nc -P ./train_data/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/ic15_data.tar
|
||||
wget -nc -P ./inference https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
|
||||
cd ./inference && tar xf ${eval_model_name}.tar && tar xf ic15_data.tar && cd ../
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ${MODE} = "cpp_infer" ];then
|
||||
cd deploy/cpp_infer
|
||||
use_opencv=$(func_parser_value "${lines[52]}")
|
||||
if [ ${use_opencv} = "True" ]; then
|
||||
echo "################### build opencv ###################"
|
||||
rm -rf 3.4.7.tar.gz opencv-3.4.7/
|
||||
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
|
||||
tar -xf 3.4.7.tar.gz
|
||||
|
||||
cd opencv-3.4.7/
|
||||
install_path=$(pwd)/opencv-3.4.7/opencv3
|
||||
|
||||
rm -rf build
|
||||
mkdir build
|
||||
cd build
|
||||
|
||||
cmake .. \
|
||||
-DCMAKE_INSTALL_PREFIX=${install_path} \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DBUILD_SHARED_LIBS=OFF \
|
||||
-DWITH_IPP=OFF \
|
||||
-DBUILD_IPP_IW=OFF \
|
||||
-DWITH_LAPACK=OFF \
|
||||
-DWITH_EIGEN=OFF \
|
||||
-DCMAKE_INSTALL_LIBDIR=lib64 \
|
||||
-DWITH_ZLIB=ON \
|
||||
-DBUILD_ZLIB=ON \
|
||||
-DWITH_JPEG=ON \
|
||||
-DBUILD_JPEG=ON \
|
||||
-DWITH_PNG=ON \
|
||||
-DBUILD_PNG=ON \
|
||||
-DWITH_TIFF=ON \
|
||||
-DBUILD_TIFF=ON
|
||||
|
||||
make -j
|
||||
make install
|
||||
cd ../
|
||||
echo "################### build opencv finished ###################"
|
||||
fi
|
||||
|
||||
|
||||
echo "################### build PaddleOCR demo ####################"
|
||||
if [ ${use_opencv} = "True" ]; then
|
||||
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
|
||||
else
|
||||
OPENCV_DIR=''
|
||||
fi
|
||||
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
|
||||
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
|
||||
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
|
||||
|
||||
BUILD_DIR=build
|
||||
rm -rf ${BUILD_DIR}
|
||||
mkdir ${BUILD_DIR}
|
||||
cd ${BUILD_DIR}
|
||||
cmake .. \
|
||||
-DPADDLE_LIB=${LIB_DIR} \
|
||||
-DWITH_MKL=ON \
|
||||
-DWITH_GPU=OFF \
|
||||
-DWITH_STATIC_LIB=OFF \
|
||||
-DWITH_TENSORRT=OFF \
|
||||
-DOPENCV_DIR=${OPENCV_DIR} \
|
||||
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
|
||||
-DCUDA_LIB=${CUDA_LIB_DIR} \
|
||||
-DTENSORRT_DIR=${TENSORRT_DIR} \
|
||||
|
||||
make -j
|
||||
echo "################### build PaddleOCR demo finished ###################"
|
||||
fi
|
|
@ -1,58 +0,0 @@
|
|||
|
||||
# 介绍
|
||||
|
||||
test.sh和params.txt文件配合使用,完成OCR轻量检测和识别模型从训练到预测的流程测试。
|
||||
|
||||
# 安装依赖
|
||||
- 安装PaddlePaddle >= 2.0
|
||||
- 安装PaddleOCR依赖
|
||||
```
|
||||
pip3 install -r ../requirements.txt
|
||||
```
|
||||
- 安装autolog
|
||||
```
|
||||
git clone https://github.com/LDOUBLEV/AutoLog
|
||||
cd AutoLog
|
||||
pip3 install -r requirements.txt
|
||||
python3 setup.py bdist_wheel
|
||||
pip3 install ./dist/auto_log-1.0.0-py3-none-any.whl
|
||||
cd ../
|
||||
```
|
||||
|
||||
# 目录介绍
|
||||
|
||||
```bash
|
||||
tests/
|
||||
├── ocr_det_params.txt # 测试OCR检测模型的参数配置文件
|
||||
├── ocr_rec_params.txt # 测试OCR识别模型的参数配置文件
|
||||
└── prepare.sh # 完成test.sh运行所需要的数据和模型下载
|
||||
└── test.sh # 根据
|
||||
```
|
||||
|
||||
# 使用方法
|
||||
test.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
|
||||
- 模式1 lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
|
||||
```
|
||||
bash test/prepare.sh ./tests/ocr_det_params.txt 'lite_train_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'lite_train_infer'
|
||||
```
|
||||
- 模式2 whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
|
||||
```
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_infer'
|
||||
```
|
||||
|
||||
- 模式3 infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
|
||||
```
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'infer'
|
||||
用法1:
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'infer'
|
||||
用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'infer' '1'
|
||||
```
|
||||
|
||||
模式4: whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度
|
||||
```
|
||||
bash tests/prepare.sh ./tests/ocr_det_params.txt 'whole_train_infer'
|
||||
bash tests/test.sh ./tests/ocr_det_params.txt 'whole_train_infer'
|
||||
```
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
476
tests/test.sh
476
tests/test.sh
|
@ -1,476 +0,0 @@
|
|||
#!/bin/bash
|
||||
FILENAME=$1
|
||||
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
|
||||
MODE=$2
|
||||
|
||||
dataline=$(cat ${FILENAME})
|
||||
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
|
||||
function func_parser_key(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[0]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function func_parser_value(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
function func_set_params(){
|
||||
key=$1
|
||||
value=$2
|
||||
if [ ${key} = "null" ];then
|
||||
echo " "
|
||||
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
|
||||
echo " "
|
||||
else
|
||||
echo "${key}=${value}"
|
||||
fi
|
||||
}
|
||||
function func_parser_params(){
|
||||
strs=$1
|
||||
IFS=":"
|
||||
array=(${strs})
|
||||
key=${array[0]}
|
||||
tmp=${array[1]}
|
||||
IFS="|"
|
||||
res=""
|
||||
for _params in ${tmp[*]}; do
|
||||
IFS="="
|
||||
array=(${_params})
|
||||
mode=${array[0]}
|
||||
value=${array[1]}
|
||||
if [[ ${mode} = ${MODE} ]]; then
|
||||
IFS="|"
|
||||
#echo $(func_set_params "${mode}" "${value}")
|
||||
echo $value
|
||||
break
|
||||
fi
|
||||
IFS="|"
|
||||
done
|
||||
echo ${res}
|
||||
}
|
||||
function status_check(){
|
||||
last_status=$1 # the exit code
|
||||
run_command=$2
|
||||
run_log=$3
|
||||
if [ $last_status -eq 0 ]; then
|
||||
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
else
|
||||
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
|
||||
fi
|
||||
}
|
||||
|
||||
IFS=$'\n'
|
||||
# The training params
|
||||
model_name=$(func_parser_value "${lines[1]}")
|
||||
python=$(func_parser_value "${lines[2]}")
|
||||
gpu_list=$(func_parser_value "${lines[3]}")
|
||||
train_use_gpu_key=$(func_parser_key "${lines[4]}")
|
||||
train_use_gpu_value=$(func_parser_value "${lines[4]}")
|
||||
autocast_list=$(func_parser_value "${lines[5]}")
|
||||
autocast_key=$(func_parser_key "${lines[5]}")
|
||||
epoch_key=$(func_parser_key "${lines[6]}")
|
||||
epoch_num=$(func_parser_params "${lines[6]}")
|
||||
save_model_key=$(func_parser_key "${lines[7]}")
|
||||
train_batch_key=$(func_parser_key "${lines[8]}")
|
||||
train_batch_value=$(func_parser_params "${lines[8]}")
|
||||
pretrain_model_key=$(func_parser_key "${lines[9]}")
|
||||
pretrain_model_value=$(func_parser_value "${lines[9]}")
|
||||
train_model_name=$(func_parser_value "${lines[10]}")
|
||||
train_infer_img_dir=$(func_parser_value "${lines[11]}")
|
||||
train_param_key1=$(func_parser_key "${lines[12]}")
|
||||
train_param_value1=$(func_parser_value "${lines[12]}")
|
||||
|
||||
trainer_list=$(func_parser_value "${lines[14]}")
|
||||
trainer_norm=$(func_parser_key "${lines[15]}")
|
||||
norm_trainer=$(func_parser_value "${lines[15]}")
|
||||
pact_key=$(func_parser_key "${lines[16]}")
|
||||
pact_trainer=$(func_parser_value "${lines[16]}")
|
||||
fpgm_key=$(func_parser_key "${lines[17]}")
|
||||
fpgm_trainer=$(func_parser_value "${lines[17]}")
|
||||
distill_key=$(func_parser_key "${lines[18]}")
|
||||
distill_trainer=$(func_parser_value "${lines[18]}")
|
||||
trainer_key1=$(func_parser_key "${lines[19]}")
|
||||
trainer_value1=$(func_parser_value "${lines[19]}")
|
||||
trainer_key2=$(func_parser_key "${lines[20]}")
|
||||
trainer_value2=$(func_parser_value "${lines[20]}")
|
||||
|
||||
eval_py=$(func_parser_value "${lines[23]}")
|
||||
eval_key1=$(func_parser_key "${lines[24]}")
|
||||
eval_value1=$(func_parser_value "${lines[24]}")
|
||||
|
||||
save_infer_key=$(func_parser_key "${lines[27]}")
|
||||
export_weight=$(func_parser_key "${lines[28]}")
|
||||
norm_export=$(func_parser_value "${lines[29]}")
|
||||
pact_export=$(func_parser_value "${lines[30]}")
|
||||
fpgm_export=$(func_parser_value "${lines[31]}")
|
||||
distill_export=$(func_parser_value "${lines[32]}")
|
||||
export_key1=$(func_parser_key "${lines[33]}")
|
||||
export_value1=$(func_parser_value "${lines[33]}")
|
||||
export_key2=$(func_parser_key "${lines[34]}")
|
||||
export_value2=$(func_parser_value "${lines[34]}")
|
||||
|
||||
# parser inference model
|
||||
infer_model_dir_list=$(func_parser_value "${lines[36]}")
|
||||
infer_export_list=$(func_parser_value "${lines[37]}")
|
||||
infer_is_quant=$(func_parser_value "${lines[38]}")
|
||||
# parser inference
|
||||
inference_py=$(func_parser_value "${lines[39]}")
|
||||
use_gpu_key=$(func_parser_key "${lines[40]}")
|
||||
use_gpu_list=$(func_parser_value "${lines[40]}")
|
||||
use_mkldnn_key=$(func_parser_key "${lines[41]}")
|
||||
use_mkldnn_list=$(func_parser_value "${lines[41]}")
|
||||
cpu_threads_key=$(func_parser_key "${lines[42]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[42]}")
|
||||
batch_size_key=$(func_parser_key "${lines[43]}")
|
||||
batch_size_list=$(func_parser_value "${lines[43]}")
|
||||
use_trt_key=$(func_parser_key "${lines[44]}")
|
||||
use_trt_list=$(func_parser_value "${lines[44]}")
|
||||
precision_key=$(func_parser_key "${lines[45]}")
|
||||
precision_list=$(func_parser_value "${lines[45]}")
|
||||
infer_model_key=$(func_parser_key "${lines[46]}")
|
||||
image_dir_key=$(func_parser_key "${lines[47]}")
|
||||
infer_img_dir=$(func_parser_value "${lines[47]}")
|
||||
save_log_key=$(func_parser_key "${lines[48]}")
|
||||
benchmark_key=$(func_parser_key "${lines[49]}")
|
||||
benchmark_value=$(func_parser_value "${lines[49]}")
|
||||
infer_key1=$(func_parser_key "${lines[50]}")
|
||||
infer_value1=$(func_parser_value "${lines[50]}")
|
||||
|
||||
if [ ${MODE} = "cpp_infer" ]; then
|
||||
# parser cpp inference model
|
||||
cpp_infer_model_dir_list=$(func_parser_value "${lines[53]}")
|
||||
cpp_infer_is_quant=$(func_parser_value "${lines[54]}")
|
||||
# parser cpp inference
|
||||
inference_cmd=$(func_parser_value "${lines[55]}")
|
||||
cpp_use_gpu_key=$(func_parser_key "${lines[56]}")
|
||||
cpp_use_gpu_list=$(func_parser_value "${lines[56]}")
|
||||
cpp_use_mkldnn_key=$(func_parser_key "${lines[57]}")
|
||||
cpp_use_mkldnn_list=$(func_parser_value "${lines[57]}")
|
||||
cpp_cpu_threads_key=$(func_parser_key "${lines[58]}")
|
||||
cpp_cpu_threads_list=$(func_parser_value "${lines[58]}")
|
||||
cpp_batch_size_key=$(func_parser_key "${lines[59]}")
|
||||
cpp_batch_size_list=$(func_parser_value "${lines[59]}")
|
||||
cpp_use_trt_key=$(func_parser_key "${lines[60]}")
|
||||
cpp_use_trt_list=$(func_parser_value "${lines[60]}")
|
||||
cpp_precision_key=$(func_parser_key "${lines[61]}")
|
||||
cpp_precision_list=$(func_parser_value "${lines[61]}")
|
||||
cpp_infer_model_key=$(func_parser_key "${lines[62]}")
|
||||
cpp_image_dir_key=$(func_parser_key "${lines[63]}")
|
||||
cpp_infer_img_dir=$(func_parser_value "${lines[63]}")
|
||||
cpp_save_log_key=$(func_parser_key "${lines[64]}")
|
||||
cpp_benchmark_key=$(func_parser_key "${lines[65]}")
|
||||
cpp_benchmark_value=$(func_parser_value "${lines[65]}")
|
||||
fi
|
||||
|
||||
|
||||
LOG_PATH="./tests/output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
status_log="${LOG_PATH}/results.log"
|
||||
|
||||
|
||||
function func_inference(){
|
||||
IFS='|'
|
||||
_python=$1
|
||||
_script=$2
|
||||
_model_dir=$3
|
||||
_log_path=$4
|
||||
_img_dir=$5
|
||||
_flag_quant=$6
|
||||
# inference
|
||||
for use_gpu in ${use_gpu_list[*]}; do
|
||||
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
||||
for use_mkldnn in ${use_mkldnn_list[*]}; do
|
||||
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for threads in ${cpu_threads_list[*]}; do
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
|
||||
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
||||
for use_trt in ${use_trt_list[*]}; do
|
||||
for precision in ${precision_list[*]}; do
|
||||
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
|
||||
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
|
||||
set_precision=$(func_set_params "${precision_key}" "${precision}")
|
||||
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
|
||||
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
|
||||
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
|
||||
done
|
||||
done
|
||||
done
|
||||
else
|
||||
echo "Does not support hardware other than CPU and GPU Currently!"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
function func_cpp_inference(){
|
||||
IFS='|'
|
||||
_script=$1
|
||||
_model_dir=$2
|
||||
_log_path=$3
|
||||
_img_dir=$4
|
||||
_flag_quant=$5
|
||||
# inference
|
||||
for use_gpu in ${cpp_use_gpu_list[*]}; do
|
||||
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
|
||||
for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
|
||||
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for threads in ${cpp_cpu_threads_list[*]}; do
|
||||
for batch_size in ${cpp_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
|
||||
set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
|
||||
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
|
||||
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
|
||||
for use_trt in ${cpp_use_trt_list[*]}; do
|
||||
for precision in ${cpp_precision_list[*]}; do
|
||||
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
|
||||
continue
|
||||
fi
|
||||
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
|
||||
continue
|
||||
fi
|
||||
for batch_size in ${cpp_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
|
||||
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
|
||||
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
|
||||
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
|
||||
set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
|
||||
set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
|
||||
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
|
||||
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
|
||||
eval $command
|
||||
last_status=${PIPESTATUS[0]}
|
||||
eval "cat ${_save_log_path}"
|
||||
status_check $last_status "${command}" "${status_log}"
|
||||
|
||||
done
|
||||
done
|
||||
done
|
||||
else
|
||||
echo "Does not support hardware other than CPU and GPU Currently!"
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
if [ ${MODE} = "infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
infer_run_exports=(${infer_export_list})
|
||||
infer_quant_flag=(${infer_is_quant})
|
||||
for infer_model in ${infer_model_dir_list[*]}; do
|
||||
# run export
|
||||
if [ ${infer_run_exports[Count]} != "null" ];then
|
||||
save_infer_dir=$(dirname $infer_model)
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
|
||||
export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}"
|
||||
eval $export_cmd
|
||||
status_export=$?
|
||||
if [ ${status_export} = 0 ];then
|
||||
status_check $status_export "${export_cmd}" "${status_log}"
|
||||
fi
|
||||
else
|
||||
save_infer_dir=${infer_model}
|
||||
fi
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
|
||||
Count=$(($Count + 1))
|
||||
done
|
||||
|
||||
elif [ ${MODE} = "cpp_infer" ]; then
|
||||
GPUID=$3
|
||||
if [ ${#GPUID} -le 0 ];then
|
||||
env=" "
|
||||
else
|
||||
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
|
||||
fi
|
||||
# set CUDA_VISIBLE_DEVICES
|
||||
eval $env
|
||||
export Count=0
|
||||
IFS="|"
|
||||
infer_quant_flag=(${cpp_infer_is_quant})
|
||||
for infer_model in ${cpp_infer_model_dir_list[*]}; do
|
||||
#run inference
|
||||
is_quant=${infer_quant_flag[Count]}
|
||||
func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
|
||||
Count=$(($Count + 1))
|
||||
done
|
||||
|
||||
else
|
||||
IFS="|"
|
||||
export Count=0
|
||||
USE_GPU_KEY=(${train_use_gpu_value})
|
||||
for gpu in ${gpu_list[*]}; do
|
||||
use_gpu=${USE_GPU_KEY[Count]}
|
||||
Count=$(($Count + 1))
|
||||
if [ ${gpu} = "-1" ];then
|
||||
env=""
|
||||
elif [ ${#gpu} -le 1 ];then
|
||||
env="export CUDA_VISIBLE_DEVICES=${gpu}"
|
||||
eval ${env}
|
||||
elif [ ${#gpu} -le 15 ];then
|
||||
IFS=","
|
||||
array=(${gpu})
|
||||
env="export CUDA_VISIBLE_DEVICES=${array[0]}"
|
||||
IFS="|"
|
||||
else
|
||||
IFS=";"
|
||||
array=(${gpu})
|
||||
ips=${array[0]}
|
||||
gpu=${array[1]}
|
||||
IFS="|"
|
||||
env=" "
|
||||
fi
|
||||
for autocast in ${autocast_list[*]}; do
|
||||
for trainer in ${trainer_list[*]}; do
|
||||
flag_quant=False
|
||||
if [ ${trainer} = ${pact_key} ]; then
|
||||
run_train=${pact_trainer}
|
||||
run_export=${pact_export}
|
||||
flag_quant=True
|
||||
elif [ ${trainer} = "${fpgm_key}" ]; then
|
||||
run_train=${fpgm_trainer}
|
||||
run_export=${fpgm_export}
|
||||
elif [ ${trainer} = "${distill_key}" ]; then
|
||||
run_train=${distill_trainer}
|
||||
run_export=${distill_export}
|
||||
elif [ ${trainer} = ${trainer_key1} ]; then
|
||||
run_train=${trainer_value1}
|
||||
run_export=${export_value1}
|
||||
elif [[ ${trainer} = ${trainer_key2} ]]; then
|
||||
run_train=${trainer_value2}
|
||||
run_export=${export_value2}
|
||||
else
|
||||
run_train=${norm_trainer}
|
||||
run_export=${norm_export}
|
||||
fi
|
||||
|
||||
if [ ${run_train} = "null" ]; then
|
||||
continue
|
||||
fi
|
||||
|
||||
set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
|
||||
set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
|
||||
set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
|
||||
set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
|
||||
set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
|
||||
set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
|
||||
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
|
||||
|
||||
# load pretrain from norm training if current trainer is pact or fpgm trainer
|
||||
if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
|
||||
set_pretrain="${load_norm_train_model}"
|
||||
fi
|
||||
|
||||
set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
|
||||
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
|
||||
cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
|
||||
elif [ ${#gpu} -le 15 ];then # train with multi-gpu
|
||||
cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
else # train with multi-machine
|
||||
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
|
||||
fi
|
||||
# run train
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
eval $cmd
|
||||
status_check $? "${cmd}" "${status_log}"
|
||||
|
||||
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
|
||||
# save norm trained models to set pretrain for pact training and fpgm training
|
||||
if [ ${trainer} = ${trainer_norm} ]; then
|
||||
load_norm_train_model=${set_eval_pretrain}
|
||||
fi
|
||||
# run eval
|
||||
if [ ${eval_py} != "null" ]; then
|
||||
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
|
||||
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
|
||||
eval $eval_cmd
|
||||
status_check $? "${eval_cmd}" "${status_log}"
|
||||
fi
|
||||
# run export model
|
||||
if [ ${run_export} != "null" ]; then
|
||||
# run export model
|
||||
save_infer_path="${save_log}"
|
||||
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
|
||||
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
|
||||
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
|
||||
eval $export_cmd
|
||||
status_check $? "${export_cmd}" "${status_log}"
|
||||
|
||||
#run inference
|
||||
eval $env
|
||||
save_infer_path="${save_log}"
|
||||
func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
|
||||
eval "unset CUDA_VISIBLE_DEVICES"
|
||||
fi
|
||||
done # done with: for trainer in ${trainer_list[*]}; do
|
||||
done # done with: for autocast in ${autocast_list[*]}; do
|
||||
done # done with: for gpu in ${gpu_list[*]}; do
|
||||
fi # end if [ ${MODE} = "infer" ]; then
|
|
@ -236,11 +236,11 @@ def create_predictor(args, mode, logger):
|
|||
max_input_shape.update(max_pact_shape)
|
||||
opt_input_shape.update(opt_pact_shape)
|
||||
elif mode == "rec":
|
||||
min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
|
||||
min_input_shape = {"x": [1, 3, 32, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 32, 320]}
|
||||
elif mode == "cls":
|
||||
min_input_shape = {"x": [args.rec_batch_num, 3, 48, 10]}
|
||||
min_input_shape = {"x": [1, 3, 48, 10]}
|
||||
max_input_shape = {"x": [args.rec_batch_num, 3, 48, 2000]}
|
||||
opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue