Merge pull request #718 from tink2123/save_log
update doc for saving log
This commit is contained in:
commit
cb1cc43259
|
@ -6,7 +6,7 @@
|
|||
|
||||
PaddleOCR提供了EAST、DB两种文本检测算法,均支持MobileNetV3、ResNet50_vd两种骨干网络,根据需要选择相应的配置文件,启动训练。例如,训练使用MobileNetV3作为骨干网络的DB检测模型(即超轻量模型使用的配置):
|
||||
```
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee det_db.log
|
||||
```
|
||||
更详细的数据准备和训练教程参考文档教程中[文本检测模型训练/评估/预测](./detection.md)。
|
||||
|
||||
|
@ -14,7 +14,7 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml
|
|||
|
||||
PaddleOCR提供了CRNN、Rosetta、STAR-Net、RARE四种文本识别算法,均支持MobileNetV3、ResNet34_vd两种骨干网络,根据需要选择相应的配置文件,启动训练。例如,训练使用MobileNetV3作为骨干网络的CRNN识别模型(即超轻量模型使用的配置):
|
||||
```
|
||||
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml
|
||||
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml 2>&1 | tee rec_ch_lite.log
|
||||
```
|
||||
更详细的数据准备和训练教程参考文档教程中[文本识别模型训练/评估/预测](./recognition.md)。
|
||||
|
||||
|
|
|
@ -62,7 +62,10 @@ tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_model
|
|||
*如果您安装的是cpu版本,请将配置文件中的 `use_gpu` 字段修改为false*
|
||||
|
||||
```shell
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/
|
||||
# 训练 mv3_db 模型,并将训练日志保存为 tain_det.log
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml \
|
||||
-o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/ \
|
||||
2>&1 | tee train_det.log
|
||||
```
|
||||
|
||||
上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。
|
||||
|
|
|
@ -128,8 +128,8 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
|
|||
export PYTHONPATH=$PYTHONPATH:.
|
||||
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
# 训练icdar15英文数据
|
||||
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
|
||||
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
|
||||
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
|
||||
```
|
||||
|
||||
- 数据增强
|
||||
|
|
|
@ -6,7 +6,7 @@ The process of making a customized ultra-lightweight OCR models can be divided i
|
|||
|
||||
PaddleOCR provides two text detection algorithms: EAST and DB. Both support MobileNetV3 and ResNet50_vd backbone networks, select the corresponding configuration file as needed and start training. For example, to train with MobileNetV3 as the backbone network for DB detection model :
|
||||
```
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee det_db.log
|
||||
```
|
||||
For more details about data preparation and training tutorials, refer to the documentation [Text detection model training/evaluation/prediction](./detection_en.md)
|
||||
|
||||
|
@ -14,7 +14,7 @@ For more details about data preparation and training tutorials, refer to the doc
|
|||
|
||||
PaddleOCR provides four text recognition algorithms: CRNN, Rosetta, STAR-Net, and RARE. They all support two backbone networks: MobileNetV3 and ResNet34_vd, select the corresponding configuration files as needed to start training. For example, to train a CRNN recognition model that uses MobileNetV3 as the backbone network:
|
||||
```
|
||||
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml
|
||||
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml 2>&1 | tee rec_ch_lite.log
|
||||
```
|
||||
For more details about data preparation and training tutorials, refer to the documentation [Text recognition model training/evaluation/prediction](./recognition_en.md)
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_model
|
|||
#### START TRAINING
|
||||
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
|
||||
```shell
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml
|
||||
python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee train_det.log
|
||||
```
|
||||
|
||||
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
|
||||
|
|
|
@ -130,8 +130,8 @@ Start training:
|
|||
export PYTHONPATH=$PYTHONPATH:.
|
||||
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
|
||||
export CUDA_VISIBLE_DEVICES=0,1,2,3
|
||||
# Training icdar15 English data
|
||||
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
|
||||
# Training icdar15 English data and saving the log as train_rec.log
|
||||
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
|
||||
```
|
||||
|
||||
- Data Augmentation
|
||||
|
|
Loading…
Reference in New Issue