Merge pull request #718 from tink2123/save_log

update doc for saving log
This commit is contained in:
xiaoting 2020-09-16 11:58:15 +08:00 committed by GitHub
commit cb1cc43259
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 13 additions and 10 deletions

View File

@ -6,7 +6,7 @@
PaddleOCR提供了EAST、DB两种文本检测算法均支持MobileNetV3、ResNet50_vd两种骨干网络根据需要选择相应的配置文件启动训练。例如训练使用MobileNetV3作为骨干网络的DB检测模型即超轻量模型使用的配置
```
python3 tools/train.py -c configs/det/det_mv3_db.yml
python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee det_db.log
```
更详细的数据准备和训练教程参考文档教程中[文本检测模型训练/评估/预测](./detection.md)。
@ -14,7 +14,7 @@ python3 tools/train.py -c configs/det/det_mv3_db.yml
PaddleOCR提供了CRNN、Rosetta、STAR-Net、RARE四种文本识别算法均支持MobileNetV3、ResNet34_vd两种骨干网络根据需要选择相应的配置文件启动训练。例如训练使用MobileNetV3作为骨干网络的CRNN识别模型即超轻量模型使用的配置
```
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml 2>&1 | tee rec_ch_lite.log
```
更详细的数据准备和训练教程参考文档教程中[文本识别模型训练/评估/预测](./recognition.md)。

View File

@ -62,7 +62,10 @@ tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_model
*如果您安装的是cpu版本请将配置文件中的 `use_gpu` 字段修改为false*
```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/
# 训练 mv3_db 模型,并将训练日志保存为 tain_det.log
python3 tools/train.py -c configs/det/det_mv3_db.yml \
-o Global.pretrain_weights=./pretrain_models/MobileNetV3_large_x0_5_pretrained/ \
2>&1 | tee train_det.log
```
上述指令中,通过-c 选择训练使用configs/det/det_db_mv3.yml配置文件。

View File

@ -128,8 +128,8 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
export PYTHONPATH=$PYTHONPATH:.
# GPU训练 支持单卡多卡训练通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3
# 训练icdar15英文数据
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
```
- 数据增强

View File

@ -6,7 +6,7 @@ The process of making a customized ultra-lightweight OCR models can be divided i
PaddleOCR provides two text detection algorithms: EAST and DB. Both support MobileNetV3 and ResNet50_vd backbone networks, select the corresponding configuration file as needed and start training. For example, to train with MobileNetV3 as the backbone network for DB detection model :
```
python3 tools/train.py -c configs/det/det_mv3_db.yml
python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee det_db.log
```
For more details about data preparation and training tutorials, refer to the documentation [Text detection model training/evaluation/prediction](./detection_en.md)
@ -14,7 +14,7 @@ For more details about data preparation and training tutorials, refer to the doc
PaddleOCR provides four text recognition algorithms: CRNN, Rosetta, STAR-Net, and RARE. They all support two backbone networks: MobileNetV3 and ResNet34_vd, select the corresponding configuration files as needed to start training. For example, to train a CRNN recognition model that uses MobileNetV3 as the backbone network:
```
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml
python3 tools/train.py -c configs/rec/rec_chinese_lite_train.yml 2>&1 | tee rec_ch_lite.log
```
For more details about data preparation and training tutorials, refer to the documentation [Text recognition model training/evaluation/prediction](./recognition_en.md)

View File

@ -62,7 +62,7 @@ tar -xf ./pretrain_models/MobileNetV3_large_x0_5_pretrained.tar ./pretrain_model
#### START TRAINING
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
```shell
python3 tools/train.py -c configs/det/det_mv3_db.yml
python3 tools/train.py -c configs/det/det_mv3_db.yml 2>&1 | tee train_det.log
```
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.

View File

@ -130,8 +130,8 @@ Start training:
export PYTHONPATH=$PYTHONPATH:.
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3
# Training icdar15 English data
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
# Training icdar15 English data and saving the log as train_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
```
- Data Augmentation