add grad clip

This commit is contained in:
WenmuZhou 2020-12-14 12:09:25 +08:00
parent 913e11cbb8
commit ccd7c40be6
4 changed files with 27 additions and 9 deletions

View File

@ -11,7 +11,7 @@
## 配置文件参数介绍
`rec_chinese_lite_train_v1.1.yml ` 为例
### Global
### Global
| 字段 | 用途 | 默认值 | 备注 |
| :----------------------: | :---------------------: | :--------------: | :--------------------: |
@ -42,6 +42,7 @@
| name | 优化器类名 | Adam | 目前支持`Momentum`,`Adam`,`RMSProp`, 见[ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ |
| beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ |
| clip_norm | 所允许的二范数最大值 | | \ |
| **lr** | 设置学习率decay方式 | - | \ |
| name | 学习率decay类名 | Cosine | 目前支持`Linear`,`Cosine`,`Step`,`Piecewise`, 见[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | 基础学习率 | 0.001 | \ |
@ -119,4 +120,4 @@
| shuffle | 每个epoch是否将数据集顺序打乱 | True | \ |
| batch_size_per_card | 训练时单卡batch size | 256 | \ |
| drop_last | 是否丢弃因数据集样本数不能被 batch_size 整除而产生的最后一个不完整的mini-batch | True | \ |
| num_workers | 用于加载数据的子进程个数若为0即为不开启子进程在主进程中进行数据加载 | 8 | \ |
| num_workers | 用于加载数据的子进程个数若为0即为不开启子进程在主进程中进行数据加载 | 8 | \ |

View File

@ -10,7 +10,7 @@ The following list can be viewed through `--help`
## INTRODUCTION TO GLOBAL PARAMETERS OF CONFIGURATION FILE
Take rec_chinese_lite_train_v1.1.yml as an example
### Global
### Global
| Parameter | Use | Defaults | Note |
| :----------------------: | :---------------------: | :--------------: | :--------------------: |
@ -41,6 +41,7 @@ Take rec_chinese_lite_train_v1.1.yml as an example
| name | Optimizer class name | Adam | Currently supports`Momentum`,`Adam`,`RMSProp`, see [ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) |
| beta1 | Set the exponential decay rate for the 1st moment estimates | 0.9 | \ |
| beta2 | Set the exponential decay rate for the 2nd moment estimates | 0.999 | \ |
| clip_norm | The maximum norm value | - | \ |
| **lr** | Set the learning rate decay method | - | \ |
| name | Learning rate decay class name | Cosine | Currently supports`Linear`,`Cosine`,`Step`,`Piecewise`, see[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) |
| learning_rate | Set the base learning rate | 0.001 | \ |
@ -118,4 +119,4 @@ In ppocr, the network is divided into four stages: Transform, Backbone, Neck and
| shuffle | Does each epoch disrupt the order of the data set | True | \ |
| batch_size_per_card | Single card batch size during training | 256 | \ |
| drop_last | Whether to discard the last incomplete mini-batch because the number of samples in the data set cannot be divisible by batch_size | True | \ |
| num_workers | The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process | 8 | \ |
| num_workers | The number of sub-processes used to load data, if it is 0, the sub-process is not started, and the data is loaded in the main process | 8 | \ |

View File

@ -16,8 +16,8 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import copy
import paddle
__all__ = ['build_optimizer']
@ -49,7 +49,13 @@ def build_optimizer(config, epochs, step_each_epoch, parameters):
# step3 build optimizer
optim_name = config.pop('name')
if 'clip_norm' in config:
clip_norm = config.pop('clip_norm')
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
else:
grad_clip = None
optim = getattr(optimizer, optim_name)(learning_rate=lr,
weight_decay=reg,
grad_clip=grad_clip,
**config)
return optim(parameters), lr

View File

@ -30,18 +30,25 @@ class Momentum(object):
regularization (WeightDecayRegularizer, optional) - The strategy of regularization.
"""
def __init__(self, learning_rate, momentum, weight_decay=None, **args):
def __init__(self,
learning_rate,
momentum,
weight_decay=None,
grad_clip=None,
**args):
super(Momentum, self).__init__()
self.learning_rate = learning_rate
self.momentum = momentum
self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, parameters):
opt = optim.Momentum(
learning_rate=self.learning_rate,
momentum=self.momentum,
parameters=parameters,
weight_decay=self.weight_decay)
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=parameters)
return opt
@ -96,10 +103,11 @@ class RMSProp(object):
def __init__(self,
learning_rate,
momentum,
momentum=0.0,
rho=0.95,
epsilon=1e-6,
weight_decay=None,
grad_clip=None,
**args):
super(RMSProp, self).__init__()
self.learning_rate = learning_rate
@ -107,6 +115,7 @@ class RMSProp(object):
self.rho = rho
self.epsilon = epsilon
self.weight_decay = weight_decay
self.grad_clip = grad_clip
def __call__(self, parameters):
opt = optim.RMSProp(
@ -115,5 +124,6 @@ class RMSProp(object):
rho=self.rho,
epsilon=self.epsilon,
weight_decay=self.weight_decay,
grad_clip=self.grad_clip,
parameters=parameters)
return opt