fix doc algorithm&recognition en&ch

This commit is contained in:
xmy0916 2020-12-09 20:45:56 +08:00
parent 1e15b1d1c2
commit ce518e552c
4 changed files with 80 additions and 49 deletions

View File

@ -54,11 +54,6 @@ PaddleOCR开源的文本识别算法列表
|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[敬请期待]()|
|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[敬请期待]()|
|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[敬请期待]()|
|RARE|Resnet34_vd||rec_r34_vd_tps_bilstm_attn|[敬请期待]()|
|RARE|MobileNetV3||rec_mv3_tps_bilstm_attn|[敬请期待]()|
|SRN|Resnet50_vd_fpn||rec_r50fpn_vd_none_srn|[敬请期待]()|
**说明:** SRN模型使用了数据扰动方法对上述提到对两个训练集进行增广增广后的数据可以在[百度网盘](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA)上下载,提取码: y3ry。
原始论文使用两阶段训练平均精度为89.74%PaddleOCR中使用one-stage训练平均精度为88.33%。两种预训练权重均在[下载链接](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar)中。
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)。

View File

@ -166,9 +166,9 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
*如果您安装的是cpu版本请将配置文件中的 `use_gpu` 字段修改为false*
```
# GPU训练 支持单卡,多卡训练,通过selected_gpus参数指定卡号
# GPU训练 支持单卡,多卡训练,通过--gpus参数指定卡号
# 训练icdar15英文数据 并将训练日志保存为 tain_rec.log
python3 -m paddle.distributed.launch --selected_gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
<a name="数据增强"></a>
- 数据增强
@ -331,9 +331,8 @@ Eval:
*注意* 评估时必须确保配置文件中 infer_img 字段为空
```
export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重
python3 tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
python3 --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
<a name="预测"></a>

View File

@ -55,12 +55,6 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|CRNN|MobileNetV3||rec_mv3_none_bilstm_ctc|[Coming soon]()|
|STAR-Net|Resnet34_vd||rec_r34_vd_tps_bilstm_ctc|[Coming soon]()|
|STAR-Net|MobileNetV3||rec_mv3_tps_bilstm_ctc|[Coming soon]()|
|RARE|Resnet34_vd||rec_r34_vd_tps_bilstm_attn|[Coming soon]()|
|RARE|MobileNetV3||rec_mv3_tps_bilstm_attn|[Coming soon]()|
|SRN|Resnet50_vd_fpn||rec_r50fpn_vd_none_srn|[Coming soon]()|
**Note** SRN model uses data expansion method to expand the two training sets mentioned above, and the expanded data can be downloaded from [Baidu Drive](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA) (download code: y3ry).
The average accuracy of the two-stage training in the original paper is 89.74%, and that of one stage training in paddleocr is 88.33%. Both pre-trained weights can be downloaded [here](https://paddleocr.bj.bcebos.com/SRN/rec_r50fpn_vd_none_srn.tar).
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md)

View File

@ -158,10 +158,9 @@ tar -xf rec_mv3_none_bilstm_ctc.tar && rm -rf rec_mv3_none_bilstm_ctc.tar
Start training:
```
# GPU training Support single card and multi-card training, specify the card number through CUDA_VISIBLE_DEVICES
export CUDA_VISIBLE_DEVICES=0,1,2,3
# GPU training Support single card and multi-card training, specify the card number through --gpus
# Training icdar15 English data and saving the log as train_rec.log
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml 2>&1 | tee train_rec.log
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml
```
<a name="Data_Augmentation"></a>
- Data Augmentation
@ -199,39 +198,69 @@ If the evaluation set is large, the test will be time-consuming. It is recommend
| rec_r34_vd_tps_bilstm_ctc.yml | STARNet | Resnet34_vd | tps | BiLSTM | ctc |
For training Chinese data, it is recommended to use
训练中文数据,推荐使用[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
[rec_chinese_lite_train_v1.1.yml](../../configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
co
Take `rec_mv3_none_none_ctc.yml` as an example:
Take `rec_chinese_lite_train_v1.1.yml` as an example:
```
Global:
...
# Modify image_shape to fit long text
image_shape: [3, 32, 320]
...
# Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ppocr/utils/ppocr_keys_v1.txt
# Modify character type
character_type: ch
# Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ./ppocr/utils/ppocr_keys_v1.txt
...
# Modify reader type
reader_yml: ./configs/rec/rec_chinese_reader.yml
# Whether to use data augmentation
distort: true
# Whether to recognize spaces
use_space_char: true
...
use_space_char: False
...
Optimizer:
...
# Add learning rate decay strategy
decay:
function: cosine_decay
# Each epoch contains iter number
step_each_epoch: 20
# Total epoch number
total_epoch: 1000
lr:
name: Cosine
learning_rate: 0.001
...
...
Train:
dataset:
# Type of datasetwe support LMDBDateSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data/
# Path of train list
label_file_list: ["./train_data/train_list.txt"]
transforms:
...
- RecResizeImg:
# Modify image_shape to fit long text
image_shape: [3, 32, 320]
...
loader:
...
# Train batch_size for Single card
batch_size_per_card: 256
...
Eval:
dataset:
# Type of datasetwe support LMDBDateSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data
# Path of eval list
label_file_list: ["./train_data/val_list.txt"]
transforms:
...
- RecResizeImg:
# Modify image_shape to fit long text
image_shape: [3, 32, 320]
...
loader:
# Eval batch_size for Single card
batch_size_per_card: 256
...
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**
@ -257,18 +286,33 @@ Take `rec_french_lite_train` as an example:
```
Global:
...
# Add a custom dictionary, if you modify the dictionary
# please point the path to the new dictionary
# Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
character_dict_path: ./ppocr/utils/dict/french_dict.txt
# Add data augmentation during training
distort: true
# Identify spaces
use_space_char: true
...
# Modify reader type
reader_yml: ./configs/rec/multi_languages/rec_french_reader.yml
...
# Whether to recognize spaces
use_space_char: False
...
Train:
dataset:
# Type of datasetwe support LMDBDateSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data/
# Path of train list
label_file_list: ["./train_data/french_train.txt"]
...
Eval:
dataset:
# Type of datasetwe support LMDBDateSet and SimpleDataSet
name: SimpleDataSet
# Path of dataset
data_dir: ./train_data
# Path of eval list
label_file_list: ["./train_data/french_val.txt"]
...
```
<a name="EVALUATION"></a>
@ -277,9 +321,8 @@ Global:
The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.
```
export CUDA_VISIBLE_DEVICES=0
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
python3 --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
<a name="PREDICTION"></a>